nykek5i 发表于 2024-6-8 01:19:04

原创 10分+!中药抗肿瘤科研新思路!


    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"> <span style="color: black;">日前</span>随着国家对中医药<span style="color: black;">科研</span>的<span style="color: black;">注意</span>及大力支持,<span style="color: black;">大众</span>对中药的探讨如火如荼,关于中药在临床的<span style="color: black;">科研</span><span style="color: black;">亦</span>在<span style="color: black;">持续</span>深入。今天享的这篇<span style="color: black;">文案</span>就揭示了中医药<span style="color: black;">行业</span>的一重大<span style="color: black;">发掘</span>!</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">2024年2月,南京中医药大学陆茵、赵杨教授团队在国际知名学术期刊Acta Pharmaceutica Sinica B(中国科技期刊卓越行动计划重点期刊,中科院医学一区,IF:14.5)<span style="color: black;">发布</span>了题为Targeting PKM2 signaling cascade with salvaianic acid A normalizes tumor blood vessels to facilitate chemotherapeutic drug delivery的最新<span style="color: black;">科研</span>成果。该<span style="color: black;">科研</span>中医药与肿瘤代谢重编程结合,<span style="color: black;">运用</span>了测序和分子对接等技术。想在中医药<span style="color: black;">行业</span>深耕,发高分<span style="color: black;">文案</span>,不妨试试这个<span style="color: black;">科研</span>思路。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q2.itc.cn/images01/20240317/44dc76253aae41f5ae0c9161912fa95e.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">题目:<span style="color: black;">经过</span>丹参酸A靶向PKM2信号级联可使肿瘤血管正常化,促进化疗<span style="color: black;">药品</span>的<span style="color: black;">传送</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">杂志:Acta Pharmaceutica Sinica B</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">影响因子:14.5</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">发布</span>时间:2024年2月23日</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"><strong style="color: blue;"><span style="color: black;">科研</span>背景</strong></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">肿瘤血管的结构和功能<span style="color: black;">反常</span>是实体瘤的<span style="color: black;">要紧</span>标志。<span style="color: black;">反常</span>的肿瘤血管不仅促进肿瘤的<span style="color: black;">发展</span>,<span style="color: black;">况且</span>会阻止抗肿瘤<span style="color: black;">药品</span>在瘤内的递送。<span style="color: black;">因此呢</span>,<span style="color: black;">发掘</span>肿瘤内皮细胞代谢<span style="color: black;">反常</span>的<span style="color: black;">重要</span>靶标及<span style="color: black;">关联</span>治疗<span style="color: black;">药品</span>已<span style="color: black;">作为</span>迫切<span style="color: black;">必须</span>,并对临床抗肿瘤联合治疗<span style="color: black;">拥有</span>重大<span style="color: black;">道理</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">丹参酸A是从活血化瘀中药丹参中提取的<span style="color: black;">重点</span>生物活性<span style="color: black;">成份</span></strong>,已有文献证明其<span style="color: black;">拥有</span>多种药理功能,然而,SAA<span style="color: black;">可否</span>能够对肿瘤血管的调节产生<span style="color: black;">明显</span>影响仍不清楚。<span style="color: black;">科研</span><span style="color: black;">发掘</span><strong style="color: blue;">SAA<span style="color: black;">经过</span>调控<span style="color: black;">重要</span>激酶PKM2<span style="color: black;">控制</span>内皮细胞糖代谢,并<span style="color: black;">经过</span>β-Catenin/Claudin-5信号级联<span style="color: black;">加强</span>内皮细胞间紧密连接。</strong>SAA<span style="color: black;">经过</span>纠正肿瘤血管<span style="color: black;">反常</span>的结构和功能,以促进化疗<span style="color: black;">药品</span>在瘤内的分布与含量。此<span style="color: black;">科研</span>揭示SAA可<span style="color: black;">做为</span>肿瘤血管正常化的有效<span style="color: black;">药品</span>并为肿瘤联合治疗<span style="color: black;">供给</span>潜在<span style="color: black;">选取</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q6.itc.cn/images01/20240317/b42723a0223f43c6b28776a16b7fdc08.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"><strong style="color: blue;"><span style="color: black;">科研</span>思路</strong></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q8.itc.cn/images01/20240317/46171049ecf44f05b7f183760d7c5836.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"><strong style="color: blue;"><span style="color: black;">重点</span>结果</strong></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">1. SAA<span style="color: black;">经过</span>缓解缺氧微环境延缓肿瘤<span style="color: black;">发展</span></strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">作者<span style="color: black;">经过</span>皮下<span style="color: black;">移植</span>LLC和B16F10肿瘤细胞,<span style="color: black;">创立</span>了2种血管生成过度的同基因小鼠肿瘤模型,并腹腔注射SAA。<span style="color: black;">经过</span>IVIS<span style="color: black;">影像</span>系统观察到,SAA对肿瘤生长的<span style="color: black;">控制</span><span style="color: black;">功效</span><span style="color: black;">明显</span>。作者<span style="color: black;">经过</span>H&amp;E染色和免疫荧光分析<span style="color: black;">发掘</span><strong style="color: blue;">SAA<span style="color: black;">能够</span><span style="color: black;">控制</span>肿瘤的增殖但对肿瘤坏死区域、核异型性和细胞凋亡<span style="color: black;">没</span><span style="color: black;">显著</span>影响</strong>。多普勒超声分析<span style="color: black;">表示</span>,SAA治疗<span style="color: black;">明显</span><span style="color: black;">加强</span>了LLC和B16F10肿瘤的血管灌注和氧合。SAA治疗的动态血流和灌注的<span style="color: black;">增多</span>在<span style="color: black;">全部</span>肿瘤中都观察到,<span style="color: black;">乃至</span>在集中在肿瘤的核心。<span style="color: black;">科研</span>人员注射检测<span style="color: black;">身体</span>缺氧区的试剂吡莫硝唑,免疫荧光染色结果<span style="color: black;">表示</span>SAA能有效地减弱肿瘤血管<span style="color: black;">周边</span>的缺氧区。SAA治疗后HIF-1α和CA-9的表达水平均<span style="color: black;">明显</span>降低,<span style="color: black;">显示</span><strong style="color: blue;">SAA对降低肿瘤缺氧<span style="color: black;">拥有</span><span style="color: black;">明显</span><span style="color: black;">功效</span>。</strong>综上所述,数据<span style="color: black;">显示</span>SAA<span style="color: black;">经过</span>改善肿瘤缺氧微环境在<span style="color: black;">控制</span>肿瘤<span style="color: black;">发展</span>中发挥了<span style="color: black;">重要</span><span style="color: black;">功效</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q8.itc.cn/images01/20240317/5a6560a0fd73441d9302c2a4d6286adc.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">2. SAA<span style="color: black;">经过</span>改善血管结构和功能促进肿瘤血管正常化</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">作者观察到SAA治疗组的血管数量<span style="color: black;">显著</span>少于对照组,<span style="color: black;">显示</span>SAA能够<span style="color: black;">控制</span>肿瘤血管生成。经SAA处理后,LLC肿瘤血管中平滑肌细胞和周细胞的覆盖范围均<span style="color: black;">明显</span><span style="color: black;">上升</span>,基底膜支持<span style="color: black;">加强</span>,肿瘤血管<span style="color: black;">周边</span>纤维蛋白原的沉积减少。与对照相比,<strong style="color: blue;">SAA被<span style="color: black;">发掘</span><span style="color: black;">能够</span><span style="color: black;">加强</span>肿瘤血管上一系列内皮连接分子的表达水平,从而<span style="color: black;">加强</span>肿瘤血管中的连接完整性。</strong>在SAA治疗组中,LLC肿瘤血管中FITC-lectin+的面积从<span style="color: black;">基本</span>上<span style="color: black;">增多</span>了,这<span style="color: black;">显示</span>SAA在<span style="color: black;">加强</span>血管灌注方面发挥了强大的<span style="color: black;">功效</span>。与对照相比,SAA处理<span style="color: black;">显著</span>阻碍了葡聚糖从<span style="color: black;">周边</span>血管的泄漏,这<span style="color: black;">显示</span>SAA降低了血管通透性。双光子显微镜下观察<span style="color: black;">发掘</span>SAA<span style="color: black;">干涉</span>能够减轻血管外tritc -葡聚糖泄漏和扩散的面积,并<span style="color: black;">引起</span>肿瘤血管直径<span style="color: black;">明显</span><span style="color: black;">增多</span>。<span style="color: black;">另外</span>,扫描电镜图像确定SAA能加强血管完整性,收紧EC连接。综上,这些<span style="color: black;">发掘</span><span style="color: black;">显示</span>,SAA<span style="color: black;">经过</span>纠正<span style="color: black;">反常</span>的血管结构和功能,在诱导血管正常化方面发挥了至关<span style="color: black;">要紧</span>的<span style="color: black;">功效</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q3.itc.cn/images01/20240317/7afecd50c941469fb682084bbd974cf2.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">3. SAA可加速缺氧<span style="color: black;">导致</span>的内皮连接<span style="color: black;">损害</span>的恢复</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">作者利用缺氧诱导的HUVECs模拟肿瘤血管内皮细胞表型。在常压条件下<span style="color: black;">仅有</span>大剂量的SAA<span style="color: black;">显著</span><span style="color: black;">控制</span>缺氧<span style="color: black;">前提</span>下HUVECs的增殖能力。为了进一步<span style="color: black;">认识</span>SAA在缺氧<span style="color: black;">前提</span>下影响HUVECs生物学<span style="color: black;">行径</span>的分子机制,作者对缺氧诱导的HUVECs进行了RNA测序,以确定SAA治疗后ECs中<span style="color: black;">明显</span>改变的基因。与对照相比,SAA反应中共有72个基因<span style="color: black;">明显</span>上调,64个基因<span style="color: black;">明显</span>下调。KEGG分析揭示,<strong style="color: blue;">差异表达的基因<span style="color: black;">重点</span>参与细胞过程,<span style="color: black;">包含</span>局灶黏着、间隙连接、TJ和AJ。</strong>这些途径与紧密连接和氧化磷酸化的正调节以及氧化应激的负调节<span style="color: black;">相关</span>。<span style="color: black;">科研</span><span style="color: black;">显示</span>,在SAA处理后,HUVECs中VE-cad和ZO1的表达水平<span style="color: black;">加强</span>。并且SAA能够在细胞-细胞接触部位<span style="color: black;">导致</span>β-Catenin的广泛表达,限制其核<span style="color: black;">累积</span>,同时磷酸化水平受损。<span style="color: black;">另外</span>SAA<span style="color: black;">加强</span>了Claudin-5在HUVEC中的表达。综上所述,在SAA调节荷瘤小鼠肿瘤血管的<span style="color: black;">功效</span>的<span style="color: black;">同期</span>,SAA能够改善内皮细胞的TJ,并挽救由缺氧<span style="color: black;">引起</span>的内皮屏障的破坏。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q9.itc.cn/images01/20240317/4c24b15a5736400cb7faeef5c7d797dc.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">4. SAA可抵消缺氧<span style="color: black;">诱发</span>的氧化应激和EC中的代谢重编程</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在RNA-seq数据的<span style="color: black;">基本</span>上,作者试图探索SAA治疗是否能够改善缺氧<span style="color: black;">诱发</span>的ECs氧化应激。与常氧<span style="color: black;">前提</span>相比,缺氧<span style="color: black;">前提</span>降低了SOD, CAT和GSH-Px的浓度,在SAA处理后逆转。<span style="color: black;">另外</span>,低氧<span style="color: black;">亦</span>能使MDA含量<span style="color: black;">明显</span><span style="color: black;">增多</span>,在SAA存在的<span style="color: black;">状况</span>下,MDA含量得以恢复。SAA处理能够在低氧<span style="color: black;">前提</span>下剂量依赖性地降低ROS和总超氧化物水平和 Keap1的蛋白表达,<span style="color: black;">同期</span><span style="color: black;">上升</span>了缺氧<span style="color: black;">前提</span>下HUVECs中Nrf2、HO-1和NQO1的蛋白水平。综上所述,<strong style="color: blue;">SAA减轻了缺氧<span style="color: black;">前提</span>下ECs的氧化应激水平。</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">为了进一步<span style="color: black;">科研</span>SAA治疗后HUVECs的代谢谱,作者进行了非靶向代谢组学分析,用于辨别SAA对HUVECs中缺氧介导的代谢重编程的影响。在低氧<span style="color: black;">前提</span>下,对照组和SAA处理组的HUVECs代谢差异<span style="color: black;">明显</span>。<span style="color: black;">另外</span>, PCA指出,<strong style="color: blue;">在对照组和SAA处理组之间的HUVECs中,沿着PCA1存在<span style="color: black;">显著</span>的分离。</strong>代谢途径分析<span style="color: black;">表示</span>,<strong style="color: blue;">缺氧<span style="color: black;">前提</span>下SAA对糖酵解/糖异生、丙酮酸代谢和戊糖磷酸途径的影响<span style="color: black;">明显</span>改变。</strong><span style="color: black;">同期</span>分析<span style="color: black;">表示</span>,SAA在很大程度上<span style="color: black;">控制</span>糖酵解和线粒体氧化<span style="color: black;">呼气</span>的水平。<span style="color: black;">因此呢</span>,这些<span style="color: black;">发掘</span>提示SAA拮抗缺氧<span style="color: black;">诱发</span>的内皮糖酵解并驱动代谢重编程。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q0.itc.cn/images01/20240317/2c444504fed048319821fe5169dc263a.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">5. SAA<span style="color: black;">经过</span>与PKM2结合限制内皮糖酵解</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">质谱分析<span style="color: black;">表示</span>PKM2相<span style="color: black;">针对</span>其他蛋白的丰度最高,并且在SAA处理组广泛富集,提示<strong style="color: blue;">PKM2可能是SAA的<span style="color: black;">重点</span>靶蛋白</strong>。<span style="color: black;">因此呢</span>作者检测了<span style="color: black;">包含</span>PK在内的一系列糖酵解酶的活性。<span style="color: black;">发掘</span> <strong style="color: blue;">SAA改变最<span style="color: black;">显著</span>的代谢途径是糖酵解</strong>,<span style="color: black;">尤其</span>是在SAA处理后,丙酮酸浓度<span style="color: black;">明显</span>降低。细胞热移实验数据<span style="color: black;">显示</span>SAA和PKM2之间存在直接相互<span style="color: black;">功效</span>,SPR分析结果证实了SAA和PKM2的直接结合。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q8.itc.cn/images01/20240317/e5d530d4d27944afb22d862717fde4e8.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">为了检测SAA在PKM2上可能的结合位点,作者进行分子对接分析。作者预测SAA的结构<span style="color: black;">能够</span>成功地融入催化结构域,并与PKM2内部的多个残基产生相互<span style="color: black;">功效</span>,转染K433A突变质粒能够逆转SAA<span style="color: black;">控制</span>的PK活性和丙酮酸含量。然而,R489A和G520A突变质粒未能挽救SAA的<span style="color: black;">功效</span>。SAA诱导的PKM2二聚化在K433A突变时被拮抗。更<span style="color: black;">要紧</span>的是,<strong style="color: blue;">SAA能够以剂量依赖的方式与PKM2野生型蛋白结合。</strong>相反,即使SAA浓度<span style="color: black;">增多</span>,K433A突变的PKM2蛋白<span style="color: black;">亦</span>几乎<span style="color: black;">无</span>结合亲和力。以上数据<span style="color: black;">显示</span><strong style="color: blue;">SAA依赖Lys433调节PKM2活性的残基。</strong><span style="color: black;">另外</span>,加权均方根偏差(RMSD)的时间演化<span style="color: black;">显示</span>,与PKM2单独结合后,PKM2的RMSD似乎更不稳定,且与SAA结合后RMSD<span style="color: black;">上升</span>。PKM2的均方根波动(RMSF)在与SAA结合时<span style="color: black;">亦</span>表现出更大的灵活性,这<span style="color: black;">显示</span>PKM2的整体波动和剩余灵活性趋势。<span style="color: black;">因此呢</span>,PKM2的Lys433残基与SAA相互<span style="color: black;">功效</span>是必需的,SAA倾向于改变PKM2的构象,形成一个<span style="color: black;">繁杂</span>的体系。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q9.itc.cn/images01/20240317/9ea6dd575dc04bdb823491b7fae85ea9.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">6. SAA<span style="color: black;">加强</span>β-Catenin/Claudin-5轴介导的内皮细胞TJ</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">与正常肺组织相比,PKM2在肺组织肿瘤区域的表达<span style="color: black;">上升</span>,PKM2的表达与CD31的表达广泛共定位。作者<span style="color: black;">发掘</span>与分化良好的肺肿瘤组织相比,<strong style="color: blue;">肿瘤内皮细胞PKM2在低分化的肺肿瘤组织中表达<span style="color: black;">升高</span>。</strong>在低分化肺肿瘤中,肿瘤血管中β-Catenin和Claudin-5的表达水平受损,<span style="color: black;">显示</span>肿瘤血管<span style="color: black;">反常</span>,内皮连接松动。作者还检测了与EC连接<span style="color: black;">关联</span>基因在肺肿瘤组织中的mRNA表达水平在低分化和高分化肺肿瘤组织中存在<span style="color: black;">明显</span>差异。<span style="color: black;">一样</span>,SAA上调CTNNB及其下游靶基因mRNA表达水平。<span style="color: black;">另外</span>,<strong style="color: blue;">共免疫沉淀分析支持SAA处理<span style="color: black;">加强</span>了β-Catenin与PKM2的结合,并且在SAA处理后β-Catenin与TCF4之间的相互<span style="color: black;">功效</span><span style="color: black;">亦</span><span style="color: black;">加强</span>。</strong><span style="color: black;">同期</span>,SAA<span style="color: black;">干涉</span>未能<span style="color: black;">加强</span>PKM2沉默的HUVECs中Claudin-5的表达。<strong style="color: blue;">在PKM2缺失的<span style="color: black;">状况</span>下,SAA<span style="color: black;">亦</span><span style="color: black;">没</span>法调节CTNNB及其下游靶基因的mRNA表达水平。</strong>综上SAA<span style="color: black;">经过</span>以PKM2依赖的方式调节β-Catenin/Claudin-5信号轴改善内皮细胞TJ。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q2.itc.cn/images01/20240317/cb2cd39b97cb4bd18357ab56350dc4c4.png" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">7. SAA促进DOX进入肿瘤,<span style="color: black;">加强</span>抗肿瘤<span style="color: black;">功效</span></strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>结果<span style="color: black;">发掘</span>,SAA联合DOX能够<span style="color: black;">明显</span><span style="color: black;">控制</span>皮下LLC和B16F10肿瘤的体积和重量。<span style="color: black;">另外</span>,与DOX单药治疗相比,<strong style="color: blue;">SAA和DOX联合治疗的抗肿瘤效果更<span style="color: black;">显著</span>,肿瘤增殖受限,坏死和凋亡<span style="color: black;">上升</span>。</strong>双光子显微镜<span style="color: black;">影像</span><span style="color: black;">表示</span>,联合治疗组LLC肿瘤的血管灌注、血管直径和DOX的递送都有所<span style="color: black;">增多</span>,<span style="color: black;">寓意</span>S<strong style="color: blue;">AA治疗激发了肿瘤血管重塑,为DOX进入肿瘤铺平了道路。</strong>进一步的免疫荧光染色证实,SAA和DOX处理的小鼠瘤内DOX水平<span style="color: black;">明显</span><span style="color: black;">加强</span>。综上所述,<span style="color: black;">咱们</span>的数据<span style="color: black;">显示</span>,SAA治疗能够促进肿瘤血管正常化,从而有助于<span style="color: black;">加强</span>化疗<span style="color: black;">药品</span>的递送和<span style="color: black;">控制</span>肿瘤<span style="color: black;">发展</span>的疗效。</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"><strong style="color: blue;"><span style="color: black;">文案</span>总结</strong></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">肿瘤的血管系统对肿瘤的<span style="color: black;">发展</span><span style="color: black;">拥有</span>深远的影响,肿瘤血管的结构和功能<span style="color: black;">反常</span>给化疗和免疫治疗的递送和疗效带来了相当大的挑战。作者证明PKM2四聚体在ECs中的<span style="color: black;">控制</span><span style="color: black;">能够</span>促进肿瘤血管正常化,并缓解缺氧微环境。SAA能够<span style="color: black;">经过</span>直接结合PKM2改变内皮糖酵解,并<span style="color: black;">经过</span>调节β-Catenin/Claudin-5信号轴决定内皮TJ的命运。并且肺癌<span style="color: black;">病人</span>肿瘤内皮中PKM2的表达与肿瘤的<span style="color: black;">发展</span>和分化密切<span style="color: black;">关联</span>,PKM2可能<span style="color: black;">做为</span>解剖肿瘤血管<span style="color: black;">行径</span>的潜在生物标志物,并可能<span style="color: black;">作为</span>抗血管生成治疗的新靶点。<span style="color: black;">另外</span>,SAA依靠肿瘤血管的正常化功能,加强化疗<span style="color: black;">药品</span>DOX在肿瘤中的渗透和分布,为联合治疗<span style="color: black;">供给</span>了新的策略,为SAA延缓肿瘤<span style="color: black;">发展</span>的药理活性和机制<span style="color: black;">供给</span>了新的见解。<a style="color: black;"><span style="color: black;">返回<span style="color: black;">外链论坛:http://www.fok120.com/</span>,查看<span style="color: black;">更加多</span></span></a></p>

    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">......</span></p>




jszmdq158 发表于 2024-9-5 12:38:53

期待楼主的下一次分享!”

4lqedz 发表于 2024-9-29 06:03:20

你的见解独到,让我受益匪浅,期待更多交流。

qzmjef 发表于 2024-10-9 02:52:48

外链发布论坛学习网络优化SEO。

m5k1umn 发表于 2024-10-24 18:57:54

说得好啊!我在外链论坛打滚这么多年,所谓阅人无数,就算没有见过猪走路,也总明白猪肉是啥味道的。

1fy07h 发表于 2024-10-25 11:39:21

你的留言真是温暖如春,让我感受到了无尽的支持与鼓励。

nqkk58 发表于 2024-10-31 17:34:41

网站建设seio论坛http://www.fok120.com/

7wu1wm0 发表于 2024-11-1 02:04:30

感谢你的精彩评论,为我的思绪打开了新的窗口。
页: [1]
查看完整版本: 原创 10分+!中药抗肿瘤科研新思路!