4zhvml8 发表于 2024-8-31 06:06:44

运用贝叶斯优化调节深度神经网络


    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/7PuqRWWU6zPD0sR6Eowibialuo8232497yktvgKq4DqAAgNd8E4b5fMGDUicWJriaE3Pib51QODjC9nFu9z4ia2LD2JQ/640?wx_fmt=jpeg&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在前一篇<span style="color: black;">文案</span>中,<span style="color: black;">咱们</span>介绍了一个<span style="color: black;">运用</span>Tensorflow和深度学习<span style="color: black;">办法</span>进行图像<span style="color: black;">归类</span>的案例<span style="color: black;">科研</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">尽管案例<span style="color: black;">科研</span>很少,但它展示了<span style="color: black;">设备</span>学习项目的<span style="color: black;">每一个</span><span style="color: black;">周期</span>:清理、预处理、模型构建、训练和<span style="color: black;">评定</span>。但<span style="color: black;">咱们</span>跳过了调优。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在本文中,<span style="color: black;">咱们</span>将深入<span style="color: black;">科研</span>超参数优化。<span style="color: black;">一样</span>,<span style="color: black;">咱们</span>将<span style="color: black;">运用</span>Tensorflow中<span style="color: black;">包括</span>的Fashion MNIST数据集。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">提醒一下,数据集<span style="color: black;">包括</span>60000个 训练集中的灰度图像和10,000 测试集中的图像。<span style="color: black;">每一个</span><span style="color: black;">照片</span><span style="color: black;">表率</span>属于10个类别(“T恤/上衣”、“裤子”、“套头衫”等)之一的时尚项目。<span style="color: black;">因此呢</span>,<span style="color: black;">咱们</span>有一个多类<span style="color: black;">归类</span>问题。</p>
    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">设置</span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">我将简要介绍准备数据集的<span style="color: black;">过程</span>。<span style="color: black;">相关</span><span style="color: black;">更加多</span>信息,请查看上一篇<span style="color: black;">文案</span>的<span style="color: black;">第1</span>部分:简而言之,<span style="color: black;">过程</span>如下:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">加载数据。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">分为训练、验证和测试集。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">规范化0–255到0–1范围内的像素值。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">one-hot<span style="color: black;">目的</span>变量。</p><span style="color: black;">#load&nbsp;data</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">(train_images,&nbsp;train_labels),&nbsp;(test_images,&nbsp;test_labels)&nbsp;=&nbsp;fashion_mnist.load_data()</p><span style="color: black;">#&nbsp;split&nbsp;into&nbsp;train,&nbsp;validation&nbsp;and&nbsp;test&nbsp;sets</span>train_x,&nbsp;val_x,&nbsp;train_y,&nbsp;val_y&nbsp;=&nbsp;train_test_split(train_images,&nbsp;train_labels,&nbsp;stratify=train_labels,&nbsp;random_state=<span style="color: black;">48</span>,&nbsp;test_size=<span style="color: black;">0.05</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">(test_x,&nbsp;test_y)=(test_images,&nbsp;test_labels)</p><span style="color: black;">#&nbsp;normalize&nbsp;pixels&nbsp;to&nbsp;range&nbsp;0-1</span>train_x&nbsp;=&nbsp;train_x&nbsp;/&nbsp;<span style="color: black;">255.0</span>val_x&nbsp;=&nbsp;val_x&nbsp;/&nbsp;<span style="color: black;">255.0</span>test_x&nbsp;=&nbsp;test_x&nbsp;/<span style="color: black;">255.0</span><span style="color: black;">#one-hot&nbsp;encode&nbsp;target&nbsp;variable</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">train_y&nbsp;=&nbsp;to_categorical(train_y)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">val_y&nbsp;=&nbsp;to_categorical(val_y)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">test_y&nbsp;=&nbsp;to_categorical(test_y)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">概括<span style="color: black;">来讲</span>,所有训练、验证和测试集的形状如下:</p>print(train_x.shape)&nbsp;&nbsp;<span style="color: black;">#(57000,&nbsp;28,&nbsp;28)</span>print(train_y.shape)&nbsp;&nbsp;<span style="color: black;">#(57000,&nbsp;10)</span>print(val_x.shape)&nbsp;&nbsp;&nbsp;&nbsp;<span style="color: black;">#(3000,&nbsp;28,&nbsp;28)</span>print(val_y.shape)&nbsp;&nbsp;&nbsp;&nbsp;<span style="color: black;">#(3000,&nbsp;10)</span>print(test_x.shape)<span style="color: black;">#(10000,&nbsp;28,&nbsp;28)</span>print(test_y.shape)&nbsp;&nbsp;&nbsp;<span style="color: black;">#(10000,&nbsp;10)</span>
    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">超参数<span style="color: black;">调节</span></span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">此刻</span>,<span style="color: black;">咱们</span>将<span style="color: black;">运用</span>Keras Tuner库:它将<span style="color: black;">帮忙</span><span style="color: black;">咱们</span><span style="color: black;">容易</span>地<span style="color: black;">调节</span>神经网络的超参数。要安装它,请执行以下操作:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">pip&nbsp;install&nbsp;keras-tuner</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">重视</span>:Keras Tuner需要Python 3.6+和TensorFlow 2.0+</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">快速提醒一下,超参数<span style="color: black;">调节</span>是<span style="color: black;">设备</span>学习项目的基本部分。超参数有两种类型:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">结构超参数:定义模型整体架构的超参数(例如,<span style="color: black;">隐匿</span>单元的数量、层数)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">优化器超参数:影响训练速度和质量的参数(例如,优化器的学习速度和类型、批次<span style="color: black;">体积</span>、epoch数)</p><span style="color: black;"><span style="color: black;">为何</span>调优很棘手?</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">为何</span>需要超参数调优库?<span style="color: black;">咱们</span><span style="color: black;">不可</span>尝试所有可能的组合,<span style="color: black;">瞧瞧</span>验证集上什么是最好的吗?</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">不幸的是,<span style="color: black;">无</span>:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">深层神经网络需要<span style="color: black;">海量</span>时间来训练,<span style="color: black;">乃至</span>需要几天。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">倘若</span>你在云上训练大型模型(<span style="color: black;">例如</span>亚马逊Sagemaker),记住每次实验都要花钱。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">因此呢</span>,一种限制超参数搜索空间的剪枝策略是必要的。</p><span style="color: black;">贝叶斯优化</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">幸运的是,Keras<span style="color: black;">调节</span>器<span style="color: black;">供给</span>了贝叶斯优化<span style="color: black;">调节</span>器。贝叶斯优化<span style="color: black;">调节</span>器<span style="color: black;">无</span>搜索每一个可能的组合,而是遵循一个迭代过程,随机<span style="color: black;">选取</span>前几个。<span style="color: black;">而后</span>,基于这些超参数的性能,贝叶斯<span style="color: black;">调节</span>器<span style="color: black;">选取</span>下一个可能的最佳。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">因此呢</span>,<span style="color: black;">每一个</span>超参数的<span style="color: black;">选取</span>都取决于先前的尝试。<span style="color: black;">按照</span>历史<span style="color: black;">选取</span>下一组超参数并<span style="color: black;">评定</span>性能的迭代次数将<span style="color: black;">连续</span>,直到<span style="color: black;">调节</span>器找到最佳组合或用尽最大次数的尝试。<span style="color: black;">咱们</span><span style="color: black;">能够</span>用参数“max_trials”来配置它。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">除了贝叶斯优化<span style="color: black;">调节</span>器之外,Keras<span style="color: black;">调节</span>器还<span style="color: black;">供给</span>了两个<span style="color: black;">调节</span>器:RandomSearch和Hyperband。<span style="color: black;">咱们</span>将在本文末尾讨论它们。</p>
    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">回到<span style="color: black;">咱们</span>的例子</span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">接下来,<span style="color: black;">咱们</span>将对网络应用超参数<span style="color: black;">调节</span>。在上一篇<span style="color: black;">文案</span>中,<span style="color: black;">咱们</span>尝试了两种网络架构,标准多层感知器(MLP)和卷积神经网络(CNN)。</p><span style="color: black;">多层感知器(MLP)</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">但<span style="color: black;">首要</span>,让<span style="color: black;">咱们</span>记住<span style="color: black;">咱们</span>的基线MLP模型是什么:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_mlp&nbsp;=&nbsp;Sequential()</p>model_mlp.add(Flatten(input_shape=(<span style="color: black;">28</span>,&nbsp;<span style="color: black;">28</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>model_mlp.add(Dense(<span style="color: black;">350</span>,&nbsp;activation=<span style="color: black;">relu</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model_mlp.add(Dense(<span style="color: black;">10</span>,&nbsp;activation=<span style="color: black;">softmax</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">print(model_mlp.summary())</p>model_mlp.compile(optimizer=<span style="color: black;">"adam"</span>,loss=<span style="color: black;">categorical_crossentropy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">调节</span>过程需要两种<span style="color: black;">重点</span><span style="color: black;">办法</span>:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">hp.Int:设置值为整数的超参数范围-例如,“Dense”层中的<span style="color: black;">隐匿</span>单位数:</span></p>model.add(Dense(units&nbsp;=&nbsp;hp.Int(<span style="color: black;">dense-bot</span>,&nbsp;min_value=<span style="color: black;">50</span>,&nbsp;max_value=<span style="color: black;">350</span>,&nbsp;step=<span style="color: black;">50</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">hp.Choice:为超参数<span style="color: black;">供给</span>一组值-例如,Adam或SGD是最佳优化器?</span></p>hp_optimizer=hp.Choice(<span style="color: black;">Optimizer</span>,&nbsp;values=[<span style="color: black;">Adam</span>,&nbsp;<span style="color: black;">SGD</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">因此呢</span>,在原始MLP示例中<span style="color: black;">运用</span>贝叶斯优化<span style="color: black;">调节</span>器,<span style="color: black;">咱们</span>测试以下超参数:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">隐匿</span>层数:1–3</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">第1</span>层<span style="color: black;">体积</span>:50–350</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">第二和第三层<span style="color: black;">体积</span>:50–350</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Dropout率:0、0.1、0.2</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">优化器:SGD(nesterov=True, momentum=0.9)或Adam</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">学习率:0.1、0.01、0.001</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model&nbsp;=&nbsp;Sequential()</p>model.add(Dense(units&nbsp;=&nbsp;hp.Int(<span style="color: black;">dense-bot</span>,&nbsp;min_value=<span style="color: black;">50</span>,&nbsp;max_value=<span style="color: black;">350</span>,&nbsp;step=<span style="color: black;">50</span>),&nbsp;input_shape=(<span style="color: black;">784</span>,),&nbsp;activation=<span style="color: black;">relu</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p><span style="color: black;">for</span>&nbsp;i&nbsp;<span style="color: black;">in</span>&nbsp;range(hp.Int(<span style="color: black;">num_dense_layers</span>,&nbsp;<span style="color: black;">1</span>,&nbsp;<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)):</p>&nbsp;&nbsp;model.add(Dense(units=hp.Int(<span style="color: black;">dense_</span>+&nbsp;str(i),&nbsp;min_value=<span style="color: black;">50</span>,&nbsp;max_value=<span style="color: black;">100</span>,&nbsp;step=<span style="color: black;">25</span>),&nbsp;activation=<span style="color: black;">relu</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>&nbsp;&nbsp;model.add(Dropout(hp.Choice(<span style="color: black;">dropout_</span>+&nbsp;str(i),&nbsp;values=[<span style="color: black;">0.0</span>,&nbsp;<span style="color: black;">0.1</span>,&nbsp;<span style="color: black;">0.2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])))</p>model.add(Dense(<span style="color: black;">10</span>,activation=<span style="color: black;">"softmax"</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>hp_optimizer=hp.Choice(<span style="color: black;">Optimizer</span>,&nbsp;values=[<span style="color: black;">Adam</span>,&nbsp;<span style="color: black;">SGD</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p><span style="color: black;">if</span>&nbsp;hp_optimizer&nbsp;==&nbsp;<span style="color: black;">Adam</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">:</p>&nbsp;&nbsp;&nbsp;&nbsp;hp_learning_rate&nbsp;=&nbsp;hp.Choice(<span style="color: black;">learning_rate</span>,&nbsp;values=[<span style="color: black;">1e-1</span>,&nbsp;<span style="color: black;">1e-2</span>,&nbsp;<span style="color: black;">1e-3</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p><span style="color: black;">elif</span>&nbsp;hp_optimizer&nbsp;==&nbsp;<span style="color: black;">SGD</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">:</p>&nbsp;&nbsp;&nbsp;&nbsp;hp_learning_rate&nbsp;=&nbsp;hp.Choice(<span style="color: black;">learning_rate</span>,&nbsp;values=[<span style="color: black;">1e-1</span>,&nbsp;<span style="color: black;">1e-2</span>,&nbsp;<span style="color: black;">1e-3</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>&nbsp;&nbsp;&nbsp;&nbsp;nesterov=<span style="color: black;">True</span>&nbsp;&nbsp;&nbsp;&nbsp;momentum=<span style="color: black;">0.9</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">重视</span>第5行的for循环:<span style="color: black;">咱们</span>让模型决定网络的深度!</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最后,<span style="color: black;">咱们</span><span style="color: black;">起步</span><span style="color: black;">调节</span>器。<span style="color: black;">重视</span>前面<span style="color: black;">说到</span>的max_trials参数。</p>model.compile(optimizer&nbsp;=&nbsp;hp_optimizer,&nbsp;loss=<span style="color: black;">categorical_crossentropy</span>,&nbsp;metrics=[<span style="color: black;">accuracy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">tuner_mlp&nbsp;=&nbsp;kt.tuners.BayesianOptimization(</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">&nbsp;&nbsp;&nbsp;&nbsp;model,</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">&nbsp;&nbsp;&nbsp;&nbsp;seed=random_seed,</p>&nbsp;&nbsp;&nbsp;&nbsp;objective=<span style="color: black;">val_loss</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,</p>&nbsp;&nbsp;&nbsp;&nbsp;max_trials=<span style="color: black;">30</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,</p>&nbsp;&nbsp;&nbsp;&nbsp;directory=<span style="color: black;">.</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,</p>&nbsp;&nbsp;&nbsp;&nbsp;project_name=<span style="color: black;">tuning-mlp</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>tuner_mlp.search(train_x,&nbsp;train_y,&nbsp;epochs=<span style="color: black;">50</span>,&nbsp;batch_size=<span style="color: black;">32</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;validation_data=(dev_x,&nbsp;dev_y),&nbsp;callbacks=callback)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">这将打印:</p><img src="https://mmbiz.qpic.cn/mmbiz_png/7PuqRWWU6zPD0sR6Eowibialuo8232497yDT0DuG76sxVkpxDHIstnnkDS9y8Wt0S0qPww9CYc4e6TpV31CRBEkQ/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;">
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">该过程耗尽了迭代次数,花费了约1小时完成。<span style="color: black;">咱们</span>还<span style="color: black;">能够</span><span style="color: black;">运用</span>以下命令打印模型的最优超参数:</p>best_mlp_hyperparameters&nbsp;=&nbsp;tuner_mlp.get_best_hyperparameters(<span style="color: black;">1</span>)[<span style="color: black;">0</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">]</p>print(<span style="color: black;">"Best&nbsp;Hyper-parameters"</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">best_mlp_hyperparameters.values</p><img src="https://mmbiz.qpic.cn/mmbiz_png/7PuqRWWU6zPD0sR6Eowibialuo8232497yOoZaaqKqrnnI3RpHf1F2nhlHQcnWJiaicSPPQf2K4IyBibIpZQjku5Uog/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;">
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">就<span style="color: black;">这般</span>!<span style="color: black;">咱们</span><span style="color: black;">此刻</span><span style="color: black;">能够</span><span style="color: black;">运用</span>最优超参数重新训练<span style="color: black;">咱们</span>的模型:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_mlp&nbsp;=&nbsp;Sequential()</p>model_mlp.add(Dense(best_mlp_hyperparameters[<span style="color: black;">dense-bot</span>],&nbsp;input_shape=(<span style="color: black;">784</span>,),&nbsp;activation=<span style="color: black;">relu</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p><span style="color: black;">for</span>&nbsp;i&nbsp;<span style="color: black;">in</span>&nbsp;range(best_mlp_hyperparameters[<span style="color: black;">num_dense_layers</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">]):</p>model_mlp.add(Dense(units=best_mlp_hyperparameters[<span style="color: black;">dense_</span>&nbsp;+str(i)],&nbsp;activation=<span style="color: black;">relu</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>&nbsp;&nbsp;model_mlp.add(Dropout(rate=best_mlp_hyperparameters[<span style="color: black;">dropout_</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">&nbsp;+str(i)]))</p>model_mlp.add(Dense(<span style="color: black;">10</span>,activation=<span style="color: black;">"softmax"</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model_mlp.compile(optimizer=best_mlp_hyperparameters[<span style="color: black;">Optimizer</span>],&nbsp;loss=<span style="color: black;">categorical_crossentropy</span>,metrics=[<span style="color: black;">accuracy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>history_mlp=&nbsp;model_mlp.fit(train_x,&nbsp;train_y,&nbsp;epochs=<span style="color: black;">100</span>,&nbsp;batch_size=<span style="color: black;">32</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;validation_data=(dev_x,&nbsp;dev_y),&nbsp;callbacks=callback)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">或</span>,<span style="color: black;">咱们</span><span style="color: black;">能够</span>用更少的<span style="color: black;">仔细</span>信息重新训练<span style="color: black;">咱们</span>的模型:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_mlp=tuner_mlp.hypermodel.build(best_mlp_hyperparameters)</p>history_mlp=model_mlp.fit(train_x,&nbsp;train_y,&nbsp;epochs=<span style="color: black;">100</span>,&nbsp;batch_size=<span style="color: black;">32</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">validation_data=(dev_x,&nbsp;dev_y),&nbsp;callbacks=callback)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">咱们</span><span style="color: black;">此刻</span>要做的<span style="color: black;">便是</span><span style="color: black;">检测</span>测试精度:</p>mlp_test_loss,&nbsp;mlp_test_acc&nbsp;=&nbsp;model_mlp.evaluate(test_x,&nbsp;&nbsp;test_y,&nbsp;verbose=<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>print(<span style="color: black;">\nTest&nbsp;accuracy:</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;mlp_test_acc)</p><span style="color: black;">#&nbsp;Test&nbsp;accuracy:&nbsp;0.8823</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">与基线的模型测试精度相比:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">基线MLP模型:86.6%</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最佳MLP模型:88.2%</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">事实上,<span style="color: black;">咱们</span>观察到测试准确度相差约3%!</p><span style="color: black;">卷积神经网络(CNN)</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">一样</span>,<span style="color: black;">咱们</span>将遵循相同的程序。<span style="color: black;">运用</span>CNN,<span style="color: black;">咱们</span><span style="color: black;">能够</span>测试<span style="color: black;">更加多</span>的参数。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">首要</span>,这是<span style="color: black;">咱们</span>的基线模型:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_cnn&nbsp;=&nbsp;Sequential()</p>model_cnn.add(Conv2D(<span style="color: black;">32</span>,&nbsp;(<span style="color: black;">3</span>,&nbsp;<span style="color: black;">3</span>),&nbsp;activation=<span style="color: black;">relu</span>,&nbsp;input_shape=(<span style="color: black;">28</span>,&nbsp;<span style="color: black;">28</span>,&nbsp;<span style="color: black;">1</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>model_cnn.add(MaxPooling2D((<span style="color: black;">2</span>,&nbsp;<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_cnn.add(Flatten())</p>model_cnn.add(Dense(<span style="color: black;">100</span>,&nbsp;activation=<span style="color: black;">relu</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model_cnn.add(Dense(<span style="color: black;">10</span>,&nbsp;activation=<span style="color: black;">softmax</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model_cnn.compile(optimizer=<span style="color: black;">"adam"</span>,&nbsp;loss=<span style="color: black;">categorical_crossentropy</span>,&nbsp;metrics=[<span style="color: black;">accuracy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">基线模型仅<span style="color: black;">包括</span>一组滤波和池层。<span style="color: black;">针对</span><span style="color: black;">咱们</span>的调优,<span style="color: black;">咱们</span>将测试以下内容:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">卷积、MaxPooling和Dropout层的“块”数</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">每一个</span>块中Conv层的滤波器尺寸:32、64</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Conv层上的有效或相同填充</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">最后</span>附加层的<span style="color: black;">隐匿</span>层<span style="color: black;">体积</span>:25–150,乘以25</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">优化器:SGD(nesterov=真,动量=0.9)或Adam</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">学习率:0.01,0.001</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model&nbsp;=&nbsp;Sequential()</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model&nbsp;=&nbsp;Sequential()</p>model.add(Input(shape=(<span style="color: black;">28</span>,&nbsp;<span style="color: black;">28</span>,&nbsp;<span style="color: black;">1</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p><span style="color: black;">for</span>&nbsp;i&nbsp;<span style="color: black;">in</span>&nbsp;range(hp.Int(<span style="color: black;">num_blocks</span>,&nbsp;<span style="color: black;">1</span>,&nbsp;<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)):</p>hp_padding=hp.Choice(<span style="color: black;">padding_</span>+&nbsp;str(i),&nbsp;values=[<span style="color: black;">valid</span>,&nbsp;<span style="color: black;">same</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>&nbsp;&nbsp;&nbsp;&nbsp;hp_filters=hp.Choice(<span style="color: black;">filters_</span>+&nbsp;str(i),&nbsp;values=[<span style="color: black;">32</span>,&nbsp;<span style="color: black;">64</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>&nbsp;&nbsp;&nbsp;&nbsp;model.add(Conv2D(hp_filters,&nbsp;(<span style="color: black;">3</span>,&nbsp;<span style="color: black;">3</span>),&nbsp;padding=hp_padding,&nbsp;activation=<span style="color: black;">relu</span>,&nbsp;kernel_initializer=<span style="color: black;">he_uniform</span>,&nbsp;input_shape=(<span style="color: black;">28</span>,&nbsp;<span style="color: black;">28</span>,&nbsp;<span style="color: black;">1</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>&nbsp;&nbsp;&nbsp;&nbsp;model.add(MaxPooling2D((<span style="color: black;">2</span>,&nbsp;<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>&nbsp;&nbsp;&nbsp;&nbsp;model.add(Dropout(hp.Choice(<span style="color: black;">dropout_</span>+&nbsp;str(i),&nbsp;values=[<span style="color: black;">0.0</span>,&nbsp;<span style="color: black;">0.1</span>,&nbsp;<span style="color: black;">0.2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])))</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model.add(Flatten())</p>hp_units&nbsp;=&nbsp;hp.Int(<span style="color: black;">units</span>,&nbsp;min_value=<span style="color: black;">25</span>,&nbsp;max_value=<span style="color: black;">150</span>,&nbsp;step=<span style="color: black;">25</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>model.add(Dense(hp_units,&nbsp;activation=<span style="color: black;">relu</span>,&nbsp;kernel_initializer=<span style="color: black;">he_uniform</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model.add(Dense(<span style="color: black;">10</span>,activation=<span style="color: black;">"softmax"</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>hp_learning_rate&nbsp;=&nbsp;hp.Choice(<span style="color: black;">learning_rate</span>,&nbsp;values=[<span style="color: black;">1e-2</span>,&nbsp;<span style="color: black;">1e-3</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>hp_optimizer=hp.Choice(<span style="color: black;">Optimizer</span>,&nbsp;values=[<span style="color: black;">Adam</span>,&nbsp;<span style="color: black;">SGD</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p><span style="color: black;">if</span>&nbsp;hp_optimizer&nbsp;==&nbsp;<span style="color: black;">Adam</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">:</p>&nbsp;&nbsp;&nbsp;&nbsp;hp_learning_rate&nbsp;=&nbsp;hp.Choice(<span style="color: black;">learning_rate</span>,&nbsp;values=[<span style="color: black;">1e-2</span>,&nbsp;<span style="color: black;">1e-3</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p><span style="color: black;">elif</span>hp_optimizer&nbsp;==<span style="color: black;">SGD</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">:</p>&nbsp;&nbsp;&nbsp;&nbsp;hp_learning_rate&nbsp;=&nbsp;hp.Choice(<span style="color: black;">learning_rate</span>,&nbsp;values=[<span style="color: black;">1e-2</span>,&nbsp;<span style="color: black;">1e-3</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>&nbsp;&nbsp;&nbsp;&nbsp;nesterov=<span style="color: black;">True</span>&nbsp;&nbsp;&nbsp;&nbsp;momentum=<span style="color: black;">0.9</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">像以前<span style="color: black;">同样</span>,<span style="color: black;">咱们</span>让网络决定其深度。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">此刻</span>,<span style="color: black;">咱们</span>准备好调用贝叶斯<span style="color: black;">调节</span>器了。最大迭代次数设置为100:</p>model.compile(&nbsp;optimizer=hp_optimizer,loss=<span style="color: black;">categorical_crossentropy</span>,&nbsp;metrics=[<span style="color: black;">accuracy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">tuner_cnn&nbsp;=&nbsp;kt.tuners.BayesianOptimization(</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">&nbsp;&nbsp;&nbsp;&nbsp;model,</p>&nbsp;&nbsp;&nbsp;&nbsp;objective=<span style="color: black;">val_loss</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,</p>max_trials=<span style="color: black;">100</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,</p>&nbsp;&nbsp;&nbsp;&nbsp;directory=<span style="color: black;">.</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,</p>&nbsp;&nbsp;&nbsp;&nbsp;project_name=<span style="color: black;">tuning-cnn</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">这将打印:</p><img src="https://mmbiz.qpic.cn/mmbiz_png/7PuqRWWU6zPD0sR6Eowibialuo8232497yofGpeZLluiciadoeZfEfaiaibibo6fWrLCcGYC34ZHRtPibTGMJDqV7l3DKg/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;">
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最好的超参数是:</p><img src="https://mmbiz.qpic.cn/mmbiz_png/7PuqRWWU6zPD0sR6Eowibialuo8232497ydAicDib5NTX6khMFftks5TdyAg2WN9xfIwzTK6lkK88jusXOW4KAQBSQ/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;">
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最后,<span style="color: black;">咱们</span><span style="color: black;">运用</span>最佳超参数训练<span style="color: black;">咱们</span>的CNN模型:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_cnn&nbsp;=&nbsp;Sequential()</p>model_cnn.add(Input(shape=(<span style="color: black;">28</span>,&nbsp;<span style="color: black;">28</span>,&nbsp;<span style="color: black;">1</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p><span style="color: black;">for</span>i<span style="color: black;">in</span>&nbsp;range(best_cnn_hyperparameters[<span style="color: black;">num_blocks</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">]):</p>&nbsp;&nbsp;hp_padding=best_cnn_hyperparameters[<span style="color: black;">padding_</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">+&nbsp;str(i)]</p>&nbsp;&nbsp;hp_filters=best_cnn_hyperparameters[<span style="color: black;">filters_</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">+&nbsp;str(i)]</p>&nbsp;&nbsp;model_cnn.add(Conv2D(hp_filters,&nbsp;(<span style="color: black;">3</span>,&nbsp;<span style="color: black;">3</span>),&nbsp;padding=hp_padding,&nbsp;activation=<span style="color: black;">relu</span>,&nbsp;kernel_initializer=<span style="color: black;">he_uniform</span>,&nbsp;input_shape=(<span style="color: black;">28</span>,&nbsp;<span style="color: black;">28</span>,&nbsp;<span style="color: black;">1</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>model_cnn.add(MaxPooling2D((<span style="color: black;">2</span>,&nbsp;<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)))</p>&nbsp;&nbsp;model_cnn.add(Dropout(best_cnn_hyperparameters[<span style="color: black;">dropout_</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">+&nbsp;str(i)]))</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">model_cnn.add(Flatten())</p>model_cnn.add(Dense(best_cnn_hyperparameters[<span style="color: black;">units</span>],&nbsp;activation=<span style="color: black;">relu</span>,&nbsp;kernel_initializer=<span style="color: black;">he_uniform</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model_cnn.add(Dense(<span style="color: black;">10</span>,activation=<span style="color: black;">"softmax"</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">))</p>model_cnn.compile(optimizer=best_cnn_hyperparameters[<span style="color: black;">Optimizer</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">],&nbsp;</p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;loss=<span style="color: black;">categorical_crossentropy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;</p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;metrics=[<span style="color: black;">accuracy</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">])</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">print(model_cnn.summary())</p>history_cnn=&nbsp;model_cnn.fit(train_x,&nbsp;train_y,&nbsp;epochs=<span style="color: black;">50</span>,&nbsp;batch_size=<span style="color: black;">32</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;validation_data=(dev_x,&nbsp;dev_y),&nbsp;callbacks=callback)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">并<span style="color: black;">检测</span>测试集的准确性:</p>cnn_test_loss,&nbsp;cnn_test_acc&nbsp;=&nbsp;model_cnn.evaluate(test_x,&nbsp;&nbsp;test_y,&nbsp;verbose=<span style="color: black;">2</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">)</p>print(<span style="color: black;">\nTest&nbsp;accuracy:</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,&nbsp;cnn_test_acc)</p><span style="color: black;">#&nbsp;Test&nbsp;accuracy:&nbsp;0.92</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">与基线的CNN模型测试精度相比(来自<span style="color: black;">咱们</span>上一篇<span style="color: black;">文案</span>):</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">基线CNN模型:90.8%</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最佳CNN模型:92%</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">一样</span>,<span style="color: black;">咱们</span>看到了优化模型的性能<span style="color: black;">加强</span>!</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">除了准确性之外,<span style="color: black;">咱们</span><span style="color: black;">能够</span>确认<span style="color: black;">调节</span>器的工作做得很好,<span style="color: black;">原由</span>如下:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">调节</span>器在每种<span style="color: black;">状况</span>下都<span style="color: black;">选取</span>了一个非零的Dropout值,尽管<span style="color: black;">咱们</span><span style="color: black;">亦</span>为<span style="color: black;">调节</span>器<span style="color: black;">供给</span>了零Dropout。这是意料之中的,<span style="color: black;">由于</span>Dropout是一种减少过拟合的机制。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">有趣的是,最好的CNN架构是标准管道,其中每层中的滤波器数量<span style="color: black;">逐步</span><span style="color: black;">增多</span>。这是意料之中的,<span style="color: black;">由于</span>随着后续层中的计算向前推进,模式变得更加<span style="color: black;">繁杂</span>。<span style="color: black;">因此呢</span>,有<span style="color: black;">更加多</span>的模式组合需要<span style="color: black;">更加多</span>的滤波器<span style="color: black;">才可</span>被<span style="color: black;">捕捉</span>。</p>
    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">结束</span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">毫无疑问,Keras Tuner是<span style="color: black;">运用</span>Tensorflow优化深度神经网络的通用工具。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最<span style="color: black;">显著</span>的<span style="color: black;">选取</span>是贝叶斯优化<span style="color: black;">调节</span>器。<span style="color: black;">然则</span>,还有两个选项<span style="color: black;">能够</span><span style="color: black;">运用</span>:</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">随机搜索:这种类型的<span style="color: black;">调节</span>器<span style="color: black;">经过</span>随机<span style="color: black;">选取</span>几个超参数来避免探索超参数的<span style="color: black;">全部</span>搜索空间。<span style="color: black;">然则</span>,它<span style="color: black;">不可</span>保证此<span style="color: black;">调节</span>器会找到最佳<span style="color: black;">调节</span>器。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Hyperband:这个<span style="color: black;">调节</span>器<span style="color: black;">选取</span><span style="color: black;">有些</span>超参数的随机组合,并<span style="color: black;">运用</span>它们来训练模型,只用于几个epoch。<span style="color: black;">而后</span>,<span style="color: black;">调节</span>器<span style="color: black;">运用</span>这些超参数来训练模型,直到所有的epoch都用完,并从中<span style="color: black;">选取</span>最好的。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">感谢阅读!</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">参考引用</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Fashion MNIST dataset by Zalando, https://www.kaggle.com/datasets/zalando-research/fashionmnist, MIT Licence (MIT) Copyright © </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Keras Tuner, https://keras.io/keras_tuner/</p><span style="color: black;">✄-----------------------------------------------</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">看到<span style="color: black;">这儿</span>,说明你<span style="color: black;">爱好</span>这篇<span style="color: black;">文案</span>,请点击「</span><span style="color: black;">在看</span><span style="color: black;">」或顺手「</span><span style="color: black;">转发</span><span style="color: black;">」「</span><span style="color: black;">点赞</span><span style="color: black;">」。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">欢迎<span style="color: black;">微X</span>搜索「</span><span style="color: black;">panchuangxx</span><span style="color: black;">」,添加<span style="color: black;">博主</span></span><span style="color: black;">磐小小仙</span><span style="color: black;"><span style="color: black;">微X</span>,每日<span style="color: black;">伴侣</span>圈更新一篇高质量推文(无<span style="color: black;">宣传</span>),为您<span style="color: black;">供给</span><span style="color: black;">更加多</span>精彩内容。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">▼ &nbsp;</span><span style="color: black;">▼</span><span style="color: black;">&nbsp;扫描二维码添加<span style="color: black;">博主</span></span><span style="color: black;">&nbsp;&nbsp;▼</span><span style="color: black;">▼&nbsp;&nbsp;</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/7PuqRWWU6zMoOVLzfFjwnzCDnnoBFtHu8pTiaxLLosYuf9QnFFsndFyVNLpEVmyzaRG1iajld2vRutibqgzMiaZvTQ/640?wx_fmt=jpeg&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p>




4lqedz 发表于 2024-10-10 12:38:33

太棒了、厉害、为你打call、点赞、非常精彩等。

m5k1umn 发表于 2024-10-14 22:56:34

感谢你的精彩评论,带给我新的思考角度。

nqkk58 发表于 2024-10-16 00:51:18

你的话语如春风拂面,让我感到无比温暖。

nqkk58 发表于 2024-10-27 14:38:37

在遇到你之前,我对人世间是否有真正的圣人是怀疑的。
页: [1]
查看完整版本: 运用贝叶斯优化调节深度神经网络