专家识别出恶性血液癌症的新型治疗靶点
来自巴塞罗那科学技术学院等<span style="color: black;">公司</span>的<span style="color: black;">专家</span>们<span style="color: black;">经过</span><span style="color: black;">科研</span><span style="color: black;">发掘</span>了一种<span style="color: black;">一般</span>能<span style="color: black;">控制</span>肿瘤形成的特殊基因,但该基因会在急性早幼粒细胞白血病(APL)发病时被重新编程。<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">基因组组织在转录过程中发挥着<span style="color: black;">要紧</span>的<span style="color: black;">功效</span>,然而转录因子<span style="color: black;">怎样</span>重新<span style="color: black;">调节</span>基因的结构从而开启并维持<span style="color: black;">引起</span>癌变转换的程序,<span style="color: black;">日前</span><span style="color: black;">科研</span>人员并不清楚。<span style="color: black;">近期</span>,一篇<span style="color: black;">发布</span>在国际杂志Genes & Development上题为“In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of Klf4 in suppressing early leukemic transformation”的<span style="color: black;">科研</span>报告中,来自巴塞罗那科学技术学院等<span style="color: black;">公司</span>的<span style="color: black;">专家</span>们<span style="color: black;">经过</span><span style="color: black;">科研</span><span style="color: black;">发掘</span>了一种<span style="color: black;">一般</span>能<span style="color: black;">控制</span>肿瘤形成的特殊基因,但该基因会在急性早幼粒细胞<a style="color: black;">白血病</a></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">(APL)发病时被重新编程,APL是一种恶性侵袭性血液癌症,其在所有类型的白血病中占到了5%-15%的比例。本文<span style="color: black;">科研</span>结果或为<span style="color: black;">研发</span>新型<span style="color: black;">药品</span>来在癌症形成的最<span style="color: black;">初期</span><span style="color: black;">周期</span><span style="color: black;">加强</span>该基因的表达<span style="color: black;">供给</span>新的思路,<span style="color: black;">同期</span>在<span style="color: black;">疾患</span>得到有效<span style="color: black;">掌控</span>之前就将其有效拦截。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://pic3.zhimg.com/80/v2-d4f43bd56d25897f8e830ebfe91ef35e_720w.webp" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"> <span style="color: black;">专家</span>识别出恶性血液癌症的新型治疗靶点。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"> <span style="color: black;">照片</span><span style="color: black;">源自</span>:Saverio Minucci/Instituto de Oncologia de Milan</p>APL的<span style="color: black;">出现</span>是<span style="color: black;">由于</span>染色体的易位<span style="color: black;">导致</span>,在这种<span style="color: black;">状况</span>下,一条染色体会<span style="color: black;">出现</span>断裂,一部分染色体结构会重新连接到另一条染色体上,在APL中或许就会<span style="color: black;">引起</span>早幼粒细胞白血病(PML)基因和视黄酸受体α(RARα)基因<span style="color: black;">出现</span>融合,此前健康的<a style="color: black;">干细胞</a>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">就会<span style="color: black;">起始</span>表达一种名为PML/RARα的新型蛋白,从而阻断其分化;<span style="color: black;">最后</span>,骨髓就会充满名为前髓细胞的<span style="color: black;">反常</span>白细胞,从而<span style="color: black;">引起</span>其它类型血液细胞的短缺,并阻断正常的血液产生。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">APL的疗法<span style="color: black;">包含</span>诸如全反式视黄酸(ATRA)的<span style="color: black;">药品</span>,其会让90%的<span style="color: black;">病人</span><span style="color: black;">疾患</span>进入缓解期,然而,<span style="color: black;">日前</span><span style="color: black;">科研</span>人员仍然<span style="color: black;">必须</span><span style="color: black;">研发</span>出新型疗法治疗<span style="color: black;">哪些</span>对疗法<span style="color: black;">没</span>法产生反应的<span style="color: black;">病人</span>,以及在治疗几年后<span style="color: black;">疾患</span>复发仍然<span style="color: black;">必须</span>治疗的<span style="color: black;">病人</span>。尽管染色体易位在<span style="color: black;">起步</span><span style="color: black;">疾患</span><span style="color: black;">出现</span>上非常<span style="color: black;">要紧</span>,但<span style="color: black;">科研</span>人员对PML/RARα<span style="color: black;">怎样</span>改变细胞的基因组架构知之甚少,<span style="color: black;">文案</span>中,<span style="color: black;">科研</span>人员利用能密切模仿人类APL<span style="color: black;">发展</span>的小鼠模型进行<span style="color: black;">科研</span>来分析在<span style="color: black;">疾患</span><span style="color: black;">出现</span>和<span style="color: black;">发展</span>过程中细胞所<span style="color: black;">出现</span>的改变。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>者<span style="color: black;">发掘</span>,PML/RARα能开启一系列改变,从而<span style="color: black;">引起</span>染色体结构支持的改变以及转录的<span style="color: black;">控制</span>,<span style="color: black;">同期</span>还会<span style="color: black;">引起</span>染色体隔间的改变,并<span style="color: black;">帮忙</span>开启或关闭进入基因组的特定区域。在早期<span style="color: black;">周期</span>受这些改变影响最大的基因之一是KLF4,其能编码一种特殊蛋白来结合DNA从而<span style="color: black;">掌控</span>遗传信息的转录率(即转录因子)。在APL<span style="color: black;">发展</span>过程中KLF4的活性会被失活,<span style="color: black;">科研</span>者<span style="color: black;">发掘</span>,当细胞被操控从而过度表达KLF4时,其就会<span style="color: black;">控制</span>癌变细胞的自我更新特性,并逆转PML-RARα活动所产生的效应。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://pic3.zhimg.com/80/v2-2a7dd5ee075fbb7a1200f73af58fa576_720w.webp" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"> <span style="color: black;">照片</span><span style="color: black;">源自</span>:<a style="color: black;"><span style="color: black;">http</span></a>://<span style="color: black;">genesdev.cshlp.org/cont</span><span style="color: black;">ent/early/2022/04/20/gad.349115.121</span>
</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>者Glòria Mas Martin说道,KLF4的过量表达或许在APL中扮演肿瘤<span style="color: black;">控制</span>子的角色,本文<span style="color: black;">科研</span>结果或有望<span style="color: black;">帮忙</span><span style="color: black;">专家</span>们<span style="color: black;">研发</span>出一种新型疗法来与现有疗法<span style="color: black;">一块</span>靶向<span style="color: black;">功效</span>这种侵袭性<span style="color: black;">疾患</span>;在后期<span style="color: black;">科研</span>中,<span style="color: black;">科研</span>者观察到,将ATRA与KLF4的过量表达相结合或能<span style="color: black;">控制</span>PML-RARa所介导的癌变特征,这或许就有望<span style="color: black;">帮忙</span><span style="color: black;">研发</span>出一种针对<span style="color: black;">没</span>反应或复发性<span style="color: black;">疾患</span><span style="color: black;">病人</span>的新型潜在疗法。<span style="color: black;">日前</span>这种<span style="color: black;">办法</span>还能用来<span style="color: black;">科研</span>其它类型癌症中基因组架构的改变,<span style="color: black;">科研</span><span style="color: black;">起步</span>癌症的<span style="color: black;">过程</span>是非常有趣的,<span style="color: black;">科研</span>人员所<span style="color: black;">研发</span>的新<span style="color: black;">办法</span>或能帮助理解扮演转录<span style="color: black;">控制</span>子的其它致癌蛋白的最初影响,从而有望<span style="color: black;">帮忙</span><span style="color: black;">研发</span>出靶向<span style="color: black;">功效</span>特殊机制的新型疗法。</p>综上,本文<span style="color: black;">科研</span>结果深入分析了一种由致癌转录因子所诱导的标贯基因组和拓扑学重编程的全面机制,<span style="color: black;">同期</span>还阐明了这种拓扑架构<span style="color: black;">怎样</span>被用来识别癌症恶性转变的新型驱动力。
我赞同你的看法,你的智慧让人佩服,谢谢分享。
页:
[1]