u1jodi1q 发表于 2024-10-10 11:30:23

医疗影像技术前沿:近红外荧光影像性能测试办法


    <h1 style="color: black; text-align: left; margin-bottom: 10px;">1 | 前言介绍</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在过去的十年里,基于荧光的<span style="color: black;">影像</span>技术在医学诊断中取得了重大<span style="color: black;">发展</span>,<span style="color: black;">尤其</span>是外源近红外(NIR)荧光染料的<span style="color: black;">运用</span>,这些染料<span style="color: black;">能够</span><span style="color: black;">加强</span>这些设备收集的信息。近红外激发和发射波长(690nm~1000nm)<span style="color: black;">表率</span>了一个区域,在该区域内源组织荧光较低,光穿透性相对较高,<span style="color: black;">由于</span>水、黑色素、氧和去氧血红蛋白的吸收较低。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">NIR荧光<span style="color: black;">影像</span>已被广泛应用于转移<span style="color: black;">影像</span>、淋巴结识别、术中肿瘤描绘和血管映射等应用中。尽管NIR<span style="color: black;">影像</span>技术在临床改善方面展现了巨大<span style="color: black;">潜能</span>,但在设备性能的客观、定量表征方面仍然缺乏标准化的测试<span style="color: black;">办法</span>。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">经过验证的组织模拟模型<span style="color: black;">能够</span>在设备生命周期的各个<span style="color: black;">周期</span>(如<span style="color: black;">初期</span>系统<span style="color: black;">研发</span>、设备优化和比较、临床<span style="color: black;">实验</span>标准化、监管<span style="color: black;">准许</span>、制造质量<span style="color: black;">掌控</span>、重新校准、临床一致性测试和临床<span style="color: black;">大夫</span>培训)中促进<span style="color: black;">各样</span>性能<span style="color: black;">评定</span>任务。<span style="color: black;">日前</span>,有许多国际共识文件描述了磁共振<span style="color: black;">影像</span>(MRI)、计算机断层扫描(CT)和PET等已<span style="color: black;">创立</span>的医学<span style="color: black;">影像</span>模式的标准化模型测试<span style="color: black;">办法</span>。然而,<span style="color: black;">针对</span>光学<span style="color: black;">影像</span>模式(如NIR荧光<span style="color: black;">影像</span>)还<span style="color: black;">无</span>等效的文件。<span style="color: black;">因此呢</span>,需要确定一组最佳的性能指标,这些指标应是客观的、定量的、科学严谨的,<span style="color: black;">同期</span>对用户的<span style="color: black;">包袱</span>最小。</span></span></p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;">2 | 材料与<span style="color: black;">办法</span></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">近红外荧光(NIRF)<span style="color: black;">影像</span>系统</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">本文中<span style="color: black;">运用</span>的所有图像均由定制的桌面NIRF<span style="color: black;">影像</span>系统获取。该系统<span style="color: black;">运用</span>一个中心波长为780nm、带宽为30nm的发光二极管(LED)<span style="color: black;">做为</span>照明光源,样品表面的辐照度为2mw/cm²。为了<span style="color: black;">加强</span>照明的均匀性,系统中<span style="color: black;">运用</span>了一个凸透镜和一个扩散器。800nm的短通滤光片用于减少检测到来自LED的激发光的可能性。相机配备了一个截止波长为825nm的长通滤光片。荧光图像由一台16位的CCD相机<span style="color: black;">捕捉</span>,相机安装在一个带有125mm长行程齿条和小齿轮轨道的支架上,以便垂直移动相机。相机图像<span style="color: black;">经过</span>Micro Manager软件获取,并<span style="color: black;">运用</span>ImageJ进行后处理。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-axegupay5k/db96619915ae4bf08a09883cfc5ae537~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=aMmtaLVN14Okz1T0ERNKs1LZ3oQ%3D" style="width: 50%; margin-bottom: 20px;">
      <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">定制近红外荧光<span style="color: black;">影像</span>系统的示意图</p>
    </div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">模型制作</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">咱们</span><span style="color: black;">研发</span>了三种类型的组织模拟模型,用于性能测试,<span style="color: black;">运用</span>ICG<span style="color: black;">做为</span>荧光剂。ICG是一种水溶性染料,在780nm<span style="color: black;">周边</span>有宽吸收峰,发射峰接近800nm。<span style="color: black;">因为</span>其光学特性和生物相容性,ICG<span style="color: black;">作为</span>临床<span style="color: black;">影像</span>生物结构(如血管和导管)的常用荧光剂。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在荧光模型制作之前,用于多孔板和广域模型的材料进行了校准,以模拟组织散射(µs’= 10cm−1)。为了达到这一<span style="color: black;">目的</span>,<span style="color: black;">咱们</span><span style="color: black;">运用</span><span style="color: black;">区别</span>浓度的二氧化钛(TiO2)制备了1mm厚的薄板模型。<span style="color: black;">每一个</span>环氧树脂模型按制造商的标准协议制备,按重量混合1:1的比例(树脂:硬化剂)。混合物搅拌10分钟后,置于低压下以去除气泡,<span style="color: black;">而后</span>静置24小时固化。用UV-VIS分光光度计<span style="color: black;">测绘</span>薄板的漫反射和透射,并<span style="color: black;">运用</span>反向叠加加倍技术估算模型的光学特性。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">多孔模型</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">多孔模型<span style="color: black;">运用</span>13种<span style="color: black;">区别</span>浓度的ICG制备,从0.008µM到52µM不等。<span style="color: black;">每一个</span>样品<span style="color: black;">包含</span>ICG、TiO2(7.4mM)、树脂和硬化剂。制备模型的协议与前述类似。混合物在一个96孔黑色微孔板中固化。该模型用于表征系统的灵敏度、线性和激发光串扰。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">宽视场模型</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">一种均匀的ICG掺杂浑浊模型用于表征空间分辨率、景深、信号线性、FOV和均匀性。该模型的制备配方和实验协议与前述<span style="color: black;">类似</span>。<span style="color: black;">针对</span>这种宽视场模型,ICG浓度为32.3µM,TiO2浓度为152mM,总体积为30mL。<span style="color: black;">最后</span>混合物经超声处理后倒入3"×6"×1.17"的模具中固化。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">多通道模型</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">第三种模型基于<span style="color: black;">咱们</span>之前在3D打印模型制作方面的工作。模型在SolidWorks中设计,并<span style="color: black;">运用</span>Polyjet打印机打印,材料为专有的紫外固化光聚合物。模型<span style="color: black;">运用</span>白色材料打印,模拟组织散射特性。利用分光光度计和反向叠加加倍软件<span style="color: black;">测绘</span>并估算其在820nm的吸收和散射系数分别为0.015mm−1和0.52mm−1。为了避免信号串扰,在通道之间打印了高度吸收的黑色材料。<span style="color: black;">每一个</span>通道直径为2mm,模型的总尺寸为6.5cm×3cm×3cm。ICG(3.2µM)与人血清白蛋白(7.25µM)溶解在PBS中,并注入通道内以产生荧光对比。该模型用于<span style="color: black;">评定</span>NIRF<span style="color: black;">影像</span>系统的穿透深度灵敏度。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/3f5e649883694aa6bea19850ce103828~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=1xOLbf8VFaLKbj7b9lIFSunjA%2BQ%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">3D打印的多通道模型用于穿透深度<span style="color: black;">测绘</span></span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">模型表征</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">液态和固态ICG模型的荧光发射光谱<span style="color: black;">运用</span>分光荧光光度计(PTI QuantaMaster QM4, Horiba Scientific, Piscataway, NJ)<span style="color: black;">测绘</span>。两种样品的ICG浓度均为3.2 µM。液态模型在固化时其发射峰<span style="color: black;">出现</span>了大约20纳米的蓝移(从820nm到800nm)。ICG在<span style="color: black;">区别</span>溶剂中<span style="color: black;">能够</span>产生<span style="color: black;">区别</span>的光谱特性。<span style="color: black;">因为</span>ICG属于碳菁染料类,其会<span style="color: black;">按照</span>浓度和溶剂的性质形成聚集体。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">荧光素的光漂白会对标准化测试产生<span style="color: black;">有害</span>影响。<span style="color: black;">因此呢</span>,<span style="color: black;">评定</span>了光稳定性以<span style="color: black;">保证</span>模型在一段时间内产生一致的荧光发射。多孔模型中最高浓度的ICG(3.2µM)在740µW/cm²、6mW/cm²和12mW/cm²的辐照度下<span style="color: black;">影像</span>。结果<span style="color: black;">显示</span>,在两个较低强度水平下<span style="color: black;">拥有</span>高度稳定性,而在12mW/cm²的<span style="color: black;">状况</span>下,30分钟内信号减少了近10%。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">长时间</span>信号变化是掺荧光染料聚合物模型的一个已知问题,可能会限制其<span style="color: black;">运用</span>寿命。为了<span style="color: black;">评定</span>稳定性,构建了两种类型的环氧树脂模型:</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a)多孔模型(3.2µM ICG)</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b)均质浑浊模型(32.3µM ICG)</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">两种模型的荧光强度<span style="color: black;">运用</span>近红外荧光<span style="color: black;">影像</span>系统每周记录一次,<span style="color: black;">连续</span>八周。多孔环氧树脂模型的强度下降了约7%,而均质模型的强度下降了约10%。两个模型在大约<span style="color: black;">一月</span>内表现出高稳定性,之后荧光强度<span style="color: black;">起始</span>下降。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">图像质量特性</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">空间分辨率</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">影像</span>系统的空间分辨率(或清晰度)是<span style="color: black;">评定</span>系统解析细微结构能力的重要图像质量特性。用于确定空间分辨率的<span style="color: black;">办法</span>多种多样,并在白光<span style="color: black;">影像</span>系统(如内窥镜)中得到了很好的<span style="color: black;">创立</span>。国际标准化组织(ISO)的内窥镜标准<span style="color: black;">举荐</span><span style="color: black;">运用</span>条形图分辨率<span style="color: black;">目的</span>(如USAF 1951<span style="color: black;">目的</span>)在中心和四个离轴位置识别水平和垂直方向的分辨率。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在本文中,采用了一种标准条形图<span style="color: black;">办法</span>,将负片<span style="color: black;">目的</span>(USAF 1951铬玻璃)<span style="color: black;">安置</span>在宽视场荧光模型上。<span style="color: black;">运用</span>780nm的LED光源照亮<span style="color: black;">目的</span>,并计算对比转移函数(CTF):</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/9dd4142c0b17488db1d2ec3bea1d5a71~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=VQ60Hi4bNgUmeZOuy6qzXkTzOC0%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">为水平和垂直方向生<span style="color: black;">成为了</span>一个CTF曲线。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/9296291cc3eb472bb09e0eae8e48c79f~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=rnhfbCVIALzDf06aWVZJaSkXmJ0%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">1951 年分辨率测试<span style="color: black;">目的</span>,负片,玻璃上镀铬(<span style="color: black;">位置于</span>宽视场荧光模型之上)</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">景深(DOF)</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">NIRF成像器的景深(DOF)<span style="color: black;">针对</span>理解图像质量<span style="color: black;">怎样</span>受到相机-<span style="color: black;">目的</span>间距和非平面组织表面的影响非常重要。<span style="color: black;">经过</span>在一系列相机到<span style="color: black;">目的</span>工作距离上进行空间分辨率<span style="color: black;">测绘</span>来确定景深。为垂直和水平方向生<span style="color: black;">成为了</span>CTF曲线。<span style="color: black;">咱们</span>基于以下三个指标来<span style="color: black;">科研</span>景深:</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a) Rayleigh准则</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b) 三阶多项式拟合</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(c) 空间频率为2 lp/mm时的对比度</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">第1</span>种<span style="color: black;">办法</span><span style="color: black;">触及</span><span style="color: black;">经过</span>线性插值确定在<span style="color: black;">每一个</span>工作距离上对比度达到26.4%的空间频率。<span style="color: black;">针对</span>第二种<span style="color: black;">办法</span>,<span style="color: black;">运用</span>三阶多项式拟合CTF函数并确定分辨率。鉴于确定CTF曲线可能耗时且过于<span style="color: black;">仔细</span>,采用了一种更简单的<span style="color: black;">办法</span>,即将单一空间频率(在最佳焦点位置<span style="color: black;">拥有</span>中等高对比度的2 lp/mm)的对比度<span style="color: black;">做为</span>工作距离的函数进行确定。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">灵敏度</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">文献中有许多<span style="color: black;">科研</span><span style="color: black;">运用</span>产生多种荧光强度水平的样品来<span style="color: black;">评定</span>灵敏度和信号线性。大<span style="color: black;">都数</span><span style="color: black;">状况</span>下,<span style="color: black;">运用</span><span style="color: black;">供给</span>一系列荧光剂浓度的多样品模型来<span style="color: black;">评定</span><span style="color: black;">影像</span>系统的灵敏度。这些模型应<span style="color: black;">供给</span>生物学上<span style="color: black;">关联</span>的浊度以及类似于<span style="color: black;">身体</span><span style="color: black;">测绘</span>时的量子产率水平和光谱特性,以优化测试结果的临床<span style="color: black;">关联</span>性。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">本<span style="color: black;">科研</span><span style="color: black;">运用</span>掺杂ICG的多孔模型进行测试。<span style="color: black;">每一个</span>模型图像<span style="color: black;">经过</span>平场校正进行处理,以校正样品的非均匀照明,<span style="color: black;">运用</span>以下关系:</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/46596084e2ee40d6854ccefd10256626~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=Apxu0hEoE8e%2B%2Bvd8%2BZHBcenv1S8%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">其中,I1=实验图像;I2=参考图像;k=实验图像的平均荧光强度。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">而后</span>,计算了最大强度位置中心直径为50像素的圆形区域的平均荧光强度。信噪比(SNR)<span style="color: black;">经过</span><span style="color: black;">测绘</span><span style="color: black;">无</span>荧光染料浓度的孔<span style="color: black;">做为</span>平均背景值(SB),平均荧光强度(SI)和背景孔的标准偏差(σ(SB))来计算。<span style="color: black;">而后</span><span style="color: black;">运用</span>以下关系计算SNR:</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/7f5803f7a99c4b48ab2e02f4c515a8a6~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=FZW05lZTJgDt4EnmVVOy%2FYA1JZM%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">检测限和定量限</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">灵敏度最重要的方面之一是特定荧光剂在特定<span style="color: black;">影像</span>系统中的检测限。<span style="color: black;">按照</span>国际标准化组织(ICH)指南,检测限(LOD)定义为SNR=3时的浓度,定量限(LOQ)定义为SNR=10时的浓度。<span style="color: black;">咱们</span>在分析中遵循这些定义。以前的研究在肽分析中<span style="color: black;">运用</span>这种技术来确定<span style="color: black;">各样</span>系统的LOD和LOQ。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">信号线性</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">信号线性是<span style="color: black;">保证</span>所获取数据准确<span style="color: black;">表率</span><span style="color: black;">影像</span>场景的关键特征,并且<span style="color: black;">能够</span>将高强度的局部特征(例如肿瘤)与背景进行最佳区分。最常用的<span style="color: black;">办法</span>是<span style="color: black;">运用</span>多孔模型,<span style="color: black;">经过</span>拟合荧光染料浓度与<span style="color: black;">测绘</span>强度的关系图来量化线性。在本文中,线性<span style="color: black;">经过</span>两种测试<span style="color: black;">办法</span>进行量化:</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a)可变荧光染料浓度</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b)可变透光率</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">为了<span style="color: black;">评定</span>设备性能的变化,进行了多次<span style="color: black;">揭发</span><span style="color: black;">连续</span>时间的<span style="color: black;">测绘</span>。最<span style="color: black;">平常</span>的量化线性的<span style="color: black;">办法</span>是<span style="color: black;">运用</span><span style="color: black;">包含</span>从<span style="color: black;">小于</span>检测限(LOD)到最大生物学<span style="color: black;">关联</span>水平的荧光染料溶液的多孔模型。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">用于表征系统线性的第二种<span style="color: black;">办法</span><span style="color: black;">触及</span>在宽视场模型上<span style="color: black;">安置</span>中性密度(ND)滤光片,这与多孔模型<span style="color: black;">办法</span><span style="color: black;">同样</span><span style="color: black;">供给</span><span style="color: black;">区别</span>水平的检测光强度。之前的<span style="color: black;">科研</span>中<span style="color: black;">运用</span>了基于ND滤光片的<span style="color: black;">办法</span>来确定结合光学相干断层扫描和自发荧光(OCT-AF)<span style="color: black;">影像</span>系统的线性。这种<span style="color: black;">办法</span>的原理和实验设计如下图所示。原则上,在NIR光经过ND滤光片传输两次(T2)后收集发射的荧光信号。<span style="color: black;">运用</span>宽视场模型<span style="color: black;">协同</span>中心有孔的黑色塑料片(相当于中性密度滤光片直径约0.5")和ND滤光片(OD:0.1、0.2、0.3、0.4、0.5、0.6、1.0、2.0、3.0和4.0)来覆盖光圈。<span style="color: black;">而后</span>对<span style="color: black;">每一个</span>滤光片进行1秒<span style="color: black;">揭发</span>的图像<span style="color: black;">捕捉</span>。<span style="color: black;">另外</span>,<span style="color: black;">运用</span>UV-VIS光谱仪单独校准<span style="color: black;">每一个</span>滤光片的透光率。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/9fe4b7ecfcd044c280b76638cc9b4df7~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=%2Btyb4mN1MZLYK%2FWGEHlSkn1GlwQ%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a) 基于可变透光率<span style="color: black;">评定</span>灵敏度的设置示意图</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b) 宽视场模型</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(c) 覆盖有黑色材料的宽视场模型</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">评估线性的两个<span style="color: black;">关联</span><span style="color: black;">构成</span>部分是线性关系的浓度范围和在该范围内线性拟合的质量。报告这两个指标可<span style="color: black;">供给</span>对设备性能的全面见解。回归起点应设在最低强度(如LOD),并<span style="color: black;">包括</span><span style="color: black;">最少</span>五个浓度点。随后添加数据点,并在R²值不<span style="color: black;">小于</span>0.98的<span style="color: black;">状况</span>下重复线性回归分析。对比<span style="color: black;">区别</span>数据集的拟合值,报告最佳R²值。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">穿透深度</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">许多<span style="color: black;">科研</span>探讨了荧光<span style="color: black;">包括</span>深度<span style="color: black;">怎样</span>影响强度和表观尺寸。这类测试<span style="color: black;">针对</span>估计<span style="color: black;">经过</span>组织检测生物结构的厚度,以及深度对<span style="color: black;">评定</span>形态学能力的影响非常重要。在本测试中,<span style="color: black;">咱们</span><span style="color: black;">运用</span>了3D打印多通道模型。记录<span style="color: black;">每一个</span>深度的荧光图像,并量化以下三个指标:全宽半高(FWHM)、对比噪声比(CNR)和穿透深度限制。<span style="color: black;">经过</span>水平剖面图分析FWHM,计算CNR,并应用Rose准则(CNR &gt; 5)确定可检测极限。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/b214e50855ea48b0a1ea1204e722b37d~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=7GsjVNFHHMRACXzkfyqGKe4dfz0%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">其中,SA=通道中的平均信号强度;SB=背景中的平均信号强度;σ0=背景的标准偏差。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/cab88ade3285469e8b17d8ea3e6ef3c5~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=TDjwGYicpYp9qm%2BNdWCMYA1BZNg%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">穿透深度模型的近红外荧光图像说明 (a) 估算对比度-噪声比的<span style="color: black;">方法</span>;(b) 取样区域的尺寸;以及 (c) 半最大全宽取样区域。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">信号均匀性</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">评定</span>图像均匀性有助于确定设备在多大程度上准确再现荧光分布。不均匀的<span style="color: black;">影像</span>可能会限制可用的视野,并改变读取者对图像中特征和趋势的感知。<span style="color: black;">另外</span>,它还可能对其他图像质量特性(如空间分辨率)产生<span style="color: black;">有害</span>影响。准确的均匀性测试<span style="color: black;">能够</span><span style="color: black;">供给</span>数据以执行图像场强度校正。信号强度在图像场中的变化<span style="color: black;">一般</span>是<span style="color: black;">因为</span>样品表面照明光的径向变化,尽管检测路径中的非理想<span style="color: black;">行径</span>(如渐晕)<span style="color: black;">亦</span>可能有<span style="color: black;">明显</span>贡献。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">为了全面<span style="color: black;">评定</span>信号均匀性,<span style="color: black;">咱们</span><span style="color: black;">运用</span>了宽视场模型。记录、绘制并定量分析水平和垂直剖面图中的强度变化。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">◈ </span><span style="color: black;"><strong style="color: blue;"><span style="color: black;">激发光串扰</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">激发光进入检测路径是荧光<span style="color: black;">影像</span>系统中的<span style="color: black;">平常</span>伪影,<span style="color: black;">因为</span>光谱过滤不充分或恶化,以及需要在接近激发波段的波长处检测荧光。多种文献对“串扰”效应进行了<span style="color: black;">评定</span>。在本<span style="color: black;">科研</span>中,对多孔模型进行了以下<span style="color: black;">测绘</span>:</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a)快门关闭</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b)仅有高散射(µs约为20cm−1,800nm)的孔</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(c)含生物<span style="color: black;">关联</span>ICG浓度的孔。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">表中汇总了<span style="color: black;">每一个</span>图像质量特性的指标、模型和<span style="color: black;">关联</span>文献。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/fc4bb487a9c34c1ba7b3f704f490b95d~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=7Uf76oSe4f6QbeYh0gJQH4Hba3s%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;">3 | 结果与讨论</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">空间分辨率</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">最佳焦点的CTF曲线分别绘制了水平和垂直方向,并<span style="color: black;">运用</span>三次多项式进行拟合,<span style="color: black;">供给</span>了高质量的<span style="color: black;">暗示</span>(R²=0.99)。<span style="color: black;">而后</span>应用Rayleigh准则确定<span style="color: black;">影像</span>系统的空间分辨率。水平和垂直CTF曲线非常<span style="color: black;">类似</span>,但分辨率值略有<span style="color: black;">区别</span>,分别为0.31mm(3.2 lp/mm)和0.29mm(3.5 lp/mm)。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">尽管<span style="color: black;">咱们</span>的<span style="color: black;">办法</span>比<span style="color: black;">运用</span>L形荧光条带的<span style="color: black;">办法</span>更<span style="color: black;">繁杂</span>和费时,但它是一种更广泛理解的标准<span style="color: black;">办法</span>,易于<span style="color: black;">运用</span><span style="color: black;">商场</span><span style="color: black;">目的</span>实现。<span style="color: black;">咱们</span>的<span style="color: black;">办法</span>更适合于偶尔的、严格的性能表征,而紧凑的多特征模型可能更适合<span style="color: black;">平常</span>测试。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/f1ebc4a5b7534c7283a0b0b862e335f5~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=hd0XLEyeJS3TWuAd%2B9CTN7u8Yvs%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">空间分辨率结果以对比度传递函数的形式呈现,分别为(a)水平方向和(b 垂直方向。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">景深(DOF)</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">景深<span style="color: black;">测绘</span><span style="color: black;">供给</span>了关于图像分辨率对设备-<span style="color: black;">目的</span>距离变化<span style="color: black;">敏锐</span>性的见解。结果<span style="color: black;">表示</span>,当模型从18mm外的位置向最佳焦点移动时,<span style="color: black;">全部</span>空间频率范围内的对比度<span style="color: black;">逐步</span><span style="color: black;">增多</span>,<span style="color: black;">而后</span>在模型<span style="color: black;">经过</span>焦平面后再次减少。这<span style="color: black;">显示</span>非平面表面在焦平面上下约1cm的变化可能会影响分辨率。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">运用</span>Rayleigh准则直接从<span style="color: black;">测绘</span>结果估算的分辨率值,以及<span style="color: black;">运用</span>三次多项式拟合CTF曲线确定的值<span style="color: black;">显示</span>,Rayleigh准则<span style="color: black;">办法</span>是探索景深的更可重复和<span style="color: black;">靠谱</span>的<span style="color: black;">办法</span>。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/56b44640d1f947f7ac285ad28f50d96a~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=hHiSHpDYa1fQFNK5mTtunBS%2BTKQ%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">景深结果<span style="color: black;">表示</span>了在七个位置(垂直方向)的对比度传递函数。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">下图<span style="color: black;">表示</span>了<span style="color: black;">按照</span><span style="color: black;">测绘</span>结果直接估算的Rayleigh分辨率值以及<span style="color: black;">经过</span>三阶多项式拟合的CTF曲线确定的值[见下图(b)]。文中还展示了一种替代的、更简单的<span style="color: black;">办法</span>,即在相机与<span style="color: black;">目的</span>距离变化时,对单组条纹在2.0 lp/mm空间频率下的对比度进行<span style="color: black;">测绘</span>。虽然单一频率分辨率<span style="color: black;">目的</span><span style="color: black;">办法</span>更简单,但它在<span style="color: black;">表示</span>聚焦区域和失焦区域之间的区别时<span style="color: black;">不足</span><span style="color: black;">显著</span>。在<span style="color: black;">评定</span>的技术中,基于Rayleigh准则的<span style="color: black;">办法</span>是探索景深时更可重复和<span style="color: black;">靠谱</span>的<span style="color: black;">办法</span>。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/b5be69714ac244a9b521bc7bb57bf982~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=U3NLRibjV55x9FpjYkThGoUas5U%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">基于<span style="color: black;">区别</span><span style="color: black;">办法</span>的景深结果:(a) Rayleigh准则(未拟合),(b) 三阶多项式拟合,以及(c) 垂直方向2 lp/mm空间频率的对比度结果,及其相应的水平方向结果(d)–(f)。2 lp/mm图像的示例集<span style="color: black;">表示</span>在(g)中。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">灵敏度</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">对每种ICG浓度(0.008µM~52µM)在三种<span style="color: black;">揭发</span>时间(100、500和1000ms)下的图像进行归一化。荧光强度随着ICG浓度的<span style="color: black;">增多</span>而成比例<span style="color: black;">增多</span>,直到某个浓度范围为止。例如,在1000ms<span style="color: black;">揭发</span>下,荧光强度在26µM之前<span style="color: black;">表示</span>出线性趋势,之后曲线的斜率减小。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/99826ffbae6847c8a770ed710da4dd09~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=2MT5Y8xiL%2FeYHCWxdEQ1qbBergg%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">单独峰值归一化的吲哚菁绿掺杂环氧树脂孔的图像,分别在三种<span style="color: black;">揭发</span>时间(100、500和1000ms)下获取。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/6e8549ea10c744319faba927f6a2fd5f~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=AHPF56KJKXQp9VsIH0SbwDtxLPI%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">ICG掺杂环氧树脂多孔模型中的平均荧光强度(a)和信噪比(b)的结果。<span style="color: black;">表示</span>了平均<span style="color: black;">测绘</span>值(n=3),但标准偏差不足以<span style="color: black;">表示</span>误差条。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">SNR<span style="color: black;">做为</span>浓度的函数进一步用于量化检测限(LOD)和定量限(LOQ)。<span style="color: black;">按照</span>ICH指南,LOD定义为SNR=3时的浓度,LOQ定义为SNR=10时的浓度。<span style="color: black;">咱们</span>在分析中遵循这些定义。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/662566fe9250497a9186f87311696e73~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=ZRHgOYMJBVmPAVC4lkaDI3CYl7Y%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">ICG 掺杂灵敏度模型中 LOD 和 LOQ 的结果</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">信号线性</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">多孔模型和ND滤光片<span style="color: black;">办法</span>均<span style="color: black;">表示</span>出良好的线性(R²=0.98-0.99),前提是上限浓度设置为13µM。ND滤光片<span style="color: black;">办法</span><span style="color: black;">供给</span>了一个有用的<span style="color: black;">弥补</span>见解,尽管它<span style="color: black;">不可</span>直接反映荧光剂的非线性或检测限。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/dc581519c28c45b5be2c363312352e2e~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=A1%2BDh7m0i6RuRwCCHmvH2fUX2%2FA%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a) 灰度近红外荧光图像与 OD 值的函数关系;</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b) 单独归一化的假色图像;</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(c) 结果图解分析及线性回归拟合。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">穿透深度</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">咱们</span><span style="color: black;">经过</span>多通道模型的图像生<span style="color: black;">成为了</span>信号强度和<span style="color: black;">包括</span>物宽度的定量数据。结果<span style="color: black;">显示</span>,CNR随深度<span style="color: black;">快速</span>下降,8mm深度后的荧光图像变得模糊,但仍<span style="color: black;">能够</span>区分通道区域。<span style="color: black;">按照</span>Rose准则(CNR&gt;5),多通道模型的穿透深度限制为12mm。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/dbdfa732d3b24a438b61bcf55bcc8396~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=NU5WtlBioDL46jrVCgv7bPsLGi8%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a)多通道模型的单独归一化图像,以及通道模型的定量分析,<span style="color: black;">包含</span>(b)信噪比和(c)表观通道宽度与深度的函数关系。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/a900e7bc7743467a9a6200b1719b503b~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=VqEMHywDSEuD1wnKiobvFLwnces%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">多通道显像管的对比噪声与深度的函数关系。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">信号均匀性</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">咱们</span><span style="color: black;">经过</span>在宽视场模型的多个位置获取图像,确定模型本身<span style="color: black;">拥有</span>高度均匀性,径向强度变化<span style="color: black;">重点</span>来自照明光源。信号均匀性从图像中心到边缘变化43%至51%。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p26-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/d091fe39286a4dd48cb0c43b9c672672~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=vdcQy6rGs9mfYhnqTbCxBQs1Kzk%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">均匀性<span style="color: black;">经过</span>二维空间分布以及水平和垂直剖面来进行说明。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">激发光串扰</span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">激发光串扰<span style="color: black;">测绘</span>结果<span style="color: black;">显示</span>,尽管存在少量激发光泄漏,但相<span style="color: black;">针对</span>生物<span style="color: black;">关联</span>ICG浓度的信号,这一水平较低。<span style="color: black;">详细</span>而言,串扰水平为背景噪声的84倍,而生物<span style="color: black;">关联</span>信号则高出31倍。</span></span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/c546bad7f10f425c938c08758027abb9~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728797673&amp;x-signature=nLffdgv9uzGHCIujwJV9ZtHPzko%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">激发光泄漏<span style="color: black;">测绘</span>结果,<span style="color: black;">包含</span>以下<span style="color: black;">状况</span>:</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(a) 快门关闭</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(b) 无荧光的环氧树脂模型,散射系数µs=20cm⁻¹</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(c) 含有生物学<span style="color: black;">关联</span>浓度的吲哚菁绿(3.2µM)的环氧树脂模型。</span></span></p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;">4 | 结论</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">基于医学和荧光<span style="color: black;">影像</span>文献中的多种<span style="color: black;">办法</span>,<span style="color: black;">咱们</span><span style="color: black;">研发</span>并展示了一套<span style="color: black;">评定</span>宽视场成像仪中荧光图像质量的综合测试<span style="color: black;">办法</span>。本文处理了以下性能特性:空间分辨率、景深(DOF)、灵敏度、检测限(LOD)、定量限(LOQ)、线性、穿透深度、视场(FOV)、均匀性、对比度细节分析和激发光泄漏。<span style="color: black;">咱们</span>还提出了<span style="color: black;">有些</span>关键指标,这些指标<span style="color: black;">能够</span>促进设备性能的直接定量比较。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">另外</span>,<span style="color: black;">以上</span>几种测试<span style="color: black;">办法</span><span style="color: black;">能够</span>稍作修改(例如<span style="color: black;">运用</span>色素代替荧光剂),以用于新兴的模式,如光声断层<span style="color: black;">影像</span>/显微镜和空间频率域<span style="color: black;">影像</span>。这些<span style="color: black;">办法</span>有可能比<span style="color: black;">一般</span>实现的更统一地<span style="color: black;">评定</span>和比较临床和临床前<span style="color: black;">影像</span>系统,其<span style="color: black;">长时间</span><span style="color: black;">目的</span>是<span style="color: black;">创立</span>荧光图像质量<span style="color: black;">评定</span>的国际标准。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">本期内容就到<span style="color: black;">这儿</span>,<span style="color: black;">倘若</span>对本期内容感兴趣,欢迎在评论区留言,或直接和<span style="color: black;">咱们</span>联系:www.colorspace.com.cn</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">本文内容梳理自Med. Phys., 47: 3389-3401,作者:Udayakumar Kanniyappan,Bohan Wang, Charles Yang,Pejman Ghassemi, Quanzeng Wang, T. Joshua Pfefer,Maritoni Litorja,Nitin Suresh</span></span></p>




wrjc1hod 发表于 2024-10-13 09:56:35

外链论坛的成功举办,是与各位领导、同仁们的关怀和支持分不开的。在此,我谨代表公司向关心和支持论坛的各界人士表示最衷心的感谢!

wrjc1hod 发表于 2024-10-23 22:44:07

你的见解真是独到,让我受益良多。

4lqedz 发表于 2024-10-31 06:54:30

论坛是一个舞台,让我们在这里尽情的释放自己。
页: [1]
查看完整版本: 医疗影像技术前沿:近红外荧光影像性能测试办法