EPMA(WDS-EDS)在金属和陶瓷中的应用:显微结构演化与相图
<h1 style="color: black; text-align: left; margin-bottom: 10px;">半导体工程师<span style="color: black;"><span style="color: black;">2024-03-26 07:26</span> <span style="color: black;"><span style="color: black;">北京</span></span></span></h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在材料科学<span style="color: black;">行业</span>,电子探针显微分析(</span>EPMA<span style="color: black;">)已被广泛用于<span style="color: black;">科研</span>金属、合金、钢、陶瓷、玻璃、涂层、生物材料、复合材料和先进材料等材料的显微结构和化学<span style="color: black;">成份</span>,以确定相图和相变、扩散界面、夹杂物和沉淀物分析、失效分析、氧化、腐蚀和偏析现象,以及薄膜和涂层分析。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">EPMA<span style="color: black;">中<span style="color: black;">一般</span><span style="color: black;">包含</span>能谱仪(</span><span style="color: black;">EDS</span><span style="color: black;">)<span style="color: black;">做为</span>其中的一个<span style="color: black;">构成</span>部分。虽然</span><span style="color: black;">EPMA</span><span style="color: black;"><span style="color: black;">重点</span><span style="color: black;">运用</span>波谱仪(</span><span style="color: black;">WDS</span><span style="color: black;">)来进行元素分析,但在<span style="color: black;">有些</span>现代化的</span><span style="color: black;">EPMA</span><span style="color: black;">系统中<span style="color: black;">亦</span>会集成</span><span style="color: black;">EDS</span><span style="color: black;">技术。在本文中,</span><span style="color: black;">EPMA</span><span style="color: black;">指</span><span style="color: black;">WDS</span><span style="color: black;">和</span><span style="color: black;">EDS</span><span style="color: black;">两种技术,或其中的一种。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">下文将讨论</span>EPMA<span style="color: black;">在材料科学和工程学中的<span style="color: black;">有些</span><span style="color: black;">表率</span>性应用,以展示该技术<span style="color: black;">日前</span>的优点和局限性。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;"><span style="color: black;">1 </span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">显微</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">结构表征</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">与相鉴定</span></span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">EPMA<span style="color: black;">在</span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构表征方面的<span style="color: black;">重点</span>应用是识别在</span></span><span style="color: black;"><span style="color: black;">SEM</span></span><span style="color: black;"><span style="color: black;">或</span></span><span style="color: black;"><span style="color: black;">EPMA</span><span style="color: black;">中</span></span><span style="color: black;"><span style="color: black;">的背散射电子</span></span><span style="color: black;"><span style="color: black;">(</span></span><span style="color: black;"><span style="color: black;">BSE</span></span><span style="color: black;"><span style="color: black;">)</span></span><span style="color: black;"><span style="color: black;">图像中观察到的相。<span style="color: black;">因为</span>电子的弹性散射随材料平均原子序数的<span style="color: black;">增多</span>而单调<span style="color: black;">增多</span>,<span style="color: black;">因此呢</span></span></span><span style="color: black;"><span style="color: black;">BSE</span></span><span style="color: black;"><span style="color: black;">图像</span></span><span style="color: black;"><span style="color: black;">让</span></span><span style="color: black;"><span style="color: black;">用户快速定位</span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构中的<span style="color: black;">成份</span>差异。这<span style="color: black;">针对</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">定位多相微结构中的某一相</span></span></span><span style="color: black;"><span style="color: black;">尤其有用。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">例如,</span>Fallah-Mehrjardi<span style="color: black;">等人<span style="color: black;">运用</span> </span><span style="color: black;">BSE </span><span style="color: black;">图像(图</span></span><span style="color: black;"><span style="color: black;">1</span></span><span style="color: black;"><span style="color: black;">)识别了铜冶炼过程中火法冶金</span> Cu-Fe-O-S-Si <span style="color: black;">系统中的各相。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">富</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">锍相</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">(</span><span style="color: black;">matte</span><span style="color: black;">)</span></span></span></strong><span style="color: black;"><span style="color: black;">是冶炼过程中回收的相,<span style="color: black;">因为</span>以硫化物形式存在的铜和铁的浓度最高,<span style="color: black;">因此呢</span><span style="color: black;">显出</span>更亮。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">炉渣</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">(</span><span style="color: black;">slag</span><span style="color: black;">)</span></span></span></strong><span style="color: black;"><span style="color: black;"><span style="color: black;">亦</span>含有铁和铜,但以氧化物和二氧化硅的形式存在,浓度较低。它的平均原子序数较低,<span style="color: black;">因此呢</span></span>BSE<span style="color: black;">强度<span style="color: black;">亦</span>较低。<span style="color: black;">因为</span>样品是从</span><span style="color: black;">1200 °C </span><span style="color: black;">淬火的,<span style="color: black;">因此呢</span>在炉渣中<span style="color: black;">能够</span>看到</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">二氧化硅的高温相</span>--<span style="color: black;">三斜石英</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">(</span><span style="color: black;">Tridymite</span><span style="color: black;">)</span></span></span></strong><span style="color: black;"><span style="color: black;">。<span style="color: black;">因为</span>它与二氧化硅坩埚<span style="color: black;">拥有</span>相同的化学<span style="color: black;">成份</span>,<span style="color: black;">因此呢</span>尽管晶体结构<span style="color: black;">区别</span>,两者却<span style="color: black;">拥有</span>相同的灰度级。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">在炉渣中</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">还</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;"><span style="color: black;">发掘</span>了亚微米级的富铜矿脉</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">(</span></span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">copper-rich veins</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">)</span></span></span></strong><span style="color: black;"><span style="color: black;">(见图</span></span><span style="color: black;"><span style="color: black;">1</span></span><span style="color: black;">a<span style="color: black;">)。<span style="color: black;">经过</span><span style="color: black;">测绘</span></span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构中<span style="color: black;">区别</span>位置的化学<span style="color: black;">成份</span>(如靠近熔渣的无光泽层、靠近气体的无光泽层等),作者</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">能够</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">认识</span></span></span><span style="color: black;"><span style="color: black;">这个</span></span><span style="color: black;"><span style="color: black;">反应过程。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">A. Fallah-Mehrjardi, Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: development of technique</span><span style="color: black;">Metall Mater Trans B, 48 (2017)</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://p26-sign.toutiaoimg.com/tos-cn-i-axegupay5k/76057bc83e884bca96921cdc4cc97daf~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728824055&x-signature=zQCeiHY%2B1oR1BHfGXEoFsNqpX6k%3D" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">图</span></span><span style="color: black;"><span style="color: black;">1</span></span><span style="color: black;">. BSE</span><span style="color: black;"><span style="color: black;">的</span></span><span style="color: black;"><span style="color: black;">灰度强度</span></span><span style="color: black;"><span style="color: black;">衬度</span></span><span style="color: black;"><span style="color: black;">在许多材料中都可用于区分物相。</span>(a) <span style="color: black;"><span style="color: black;">表示</span>亚微米富铜矿脉形成的无光泽 </span><span style="color: black;">BSE </span><span style="color: black;">图像。</span><span style="color: black;">(b)</span><span style="color: black;">火法冶金 </span><span style="color: black;">Cu-Fe-O-S-Si </span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">系统中的铜冶炼样品。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">另一个例子是</span>Samardzija<span style="color: black;">等人的<span style="color: black;">科研</span>,<span style="color: black;">她们</span><span style="color: black;">科研</span>了掺</span><span style="color: black;">Y</span><span style="color: black;">的</span><span style="color: black;">BaTiO3</span><span style="color: black;">陶瓷的次生相。虽然在抛光样品的</span><span style="color: black;">BSE</span><span style="color: black;">图像中<span style="color: black;">能够</span><span style="color: black;">经过</span>较暗的外观(钡含量较低)找到这些相,但它们<span style="color: black;">针对</span></span><span style="color: black;">EPMA</span><span style="color: black;">而言<span style="color: black;">常常</span>太小。换句话说,在所<span style="color: black;">运用</span>的分析<span style="color: black;">要求</span>(如加速电压、束</span></span><span style="color: black;"><span style="color: black;">斑</span></span><span style="color: black;"><span style="color: black;">直径等)下,</span>X<span style="color: black;">射线发射体积大于相的尺寸。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">为了促进</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">显微</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">结构的粗化,作者将样品在</span>1360 °C<span style="color: black;">的空气中热处理</span><span style="color: black;">120</span><span style="color: black;">小时</span></span></strong><span style="color: black;"><span style="color: black;">,<span style="color: black;">而后</span>进行定量分析,确定样品为</span></span><span style="color: black;"><span style="color: black;">中的相为</span></span><span style="color: black;"><span style="color: black;">Y2Ti2O7<span style="color: black;">和</span><span style="color: black;">Ba6Ti17O40</span></span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">科研</span>的另一个目的是确定钇在</span>BaTiO3<span style="color: black;">中的固体溶解极限,并<span style="color: black;">思虑</span>到掺杂钇可改善电性能的</span></span><span style="color: black;"><span style="color: black;">机理解释</span></span><span style="color: black;"><span style="color: black;">。<span style="color: black;">她们</span>在</span>WD</span><span style="color: black;"><span style="color: black;">S</span></span><span style="color: black;"><span style="color: black;">上</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">运用</span></span>PET<span style="color: black;">晶体<span style="color: black;">测绘</span>了<span style="color: black;">小于</span></span><span style="color: black;">0.5wt%</span><span style="color: black;">的钇浓度</span></span><span style="color: black;"><span style="color: black;">。尽管与</span>Y Kα<span style="color: black;">相比,</span><span style="color: black;">Y Lα X</span><span style="color: black;">射线的强度较低,但<span style="color: black;">因为</span></span><span style="color: black;">TAP</span><span style="color: black;">晶体的</span><span style="color: black;">"</span><span style="color: black;">全反射效应</span><span style="color: black;">[......]</span><span style="color: black;"><span style="color: black;">引起</span>背景强度<span style="color: black;">反常</span><span style="color: black;">增多</span>和非线性背景<span style="color: black;">行径</span></span><span style="color: black;">"</span><span style="color: black;">,<span style="color: black;">她们</span>还是<span style="color: black;">选取</span>了这种晶体而不是</span><span style="color: black;">TAP</span><span style="color: black;">晶体。为了<span style="color: black;">赔偿</span>较低的强度,<span style="color: black;">运用</span>了</span></span><span style="color: black;">50nA<span style="color: black;">的束流和</span><span style="color: black;">100</span><span style="color: black;">秒的采集时间。作者估计</span><span style="color: black;">Y</span><span style="color: black;">浓度的相对误差<span style="color: black;">少于</span></span><span style="color: black;">13%</span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Z. Samardžija, D. Makovec, M. Čeh</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">EPMA and microstructural characterization of yttrium doped BaTiO3 ceramicsMikrochim Acta, 132 (2000)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">虽然</span>BSE<span style="color: black;"><span style="color: black;">影像</span><span style="color: black;">针对</span>定位许多样品中的特征非常有用,但它有三个<span style="color: black;">重视</span>事项。<span style="color: black;">首要</span>,它</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">需要预先<span style="color: black;">认识</span>样品的<span style="color: black;">成份</span>以及元素在相和夹杂物等中的分布</span></span></strong><span style="color: black;"><span style="color: black;">。</span>BSE<span style="color: black;">图像可能会<span style="color: black;">表示</span>亮区和暗区,<span style="color: black;">显示</span>原子序数低和原子序数高的区域,但它</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;"><span style="color: black;">没法</span><span style="color: black;">供给</span><span style="color: black;">相关</span><span style="color: black;">那些</span>元素被分离在<span style="color: black;">那些</span>区域的信息</span></span></span><span style="color: black;"><span style="color: black;">。其次,如图</span></span><span style="color: black;"><span style="color: black;">2</span></span><span style="color: black;"><span style="color: black;">所示,电子</span></span><span style="color: black;"><span style="color: black;">通道衬度</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">亦</span>会影响</span>BSE<span style="color: black;"><span style="color: black;">影像</span>。</span></span><span style="color: black;"><span style="color: black;">虽然<span style="color: black;">成份</span></span></span><span style="color: black;"><span style="color: black;">衬</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">一般</span>强于通道</span></span><span style="color: black;"><span style="color: black;">衬度</span></span><span style="color: black;"><span style="color: black;">,但这两种<span style="color: black;">成份</span>可能会使</span>BSE<span style="color: black;"><span style="color: black;">影像</span>的解释<span style="color: black;">繁杂</span>化</span></span><span style="color: black;"><span style="color: black;">。最后,很难区分<span style="color: black;">成份</span><span style="color: black;">类似</span>的特征。</span>BSE<span style="color: black;">检测器的亮度和</span></span><span style="color: black;"><span style="color: black;">衬</span></span><span style="color: black;"><span style="color: black;">度<span style="color: black;">能够</span><span style="color: black;">调节</span>,以<span style="color: black;">加强</span>微小的差异,但</span></span><span style="color: black;"><span style="color: black;">这要</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">按照</span>样品和检测器的动态范围,<span style="color: black;">一般</span><span style="color: black;">没法</span>在不使图像饱和的<span style="color: black;">状况</span>下<span style="color: black;">得到</span><span style="color: black;">拥有</span><span style="color: black;">表率</span>性的图像。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/56b7a7dabe6c4369bca2697e629f276c~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728824055&x-signature=Hsj%2FTs4dkk32tVbZuevjlcrzJ4g%3D" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">图</span> </span><span style="color: black;"><span style="color: black;">2</span></span><span style="color: black;">. <span style="color: black;">多晶镍中<span style="color: black;">区别</span>晶粒取向的</span></span><span style="color: black;"><span style="color: black;">通道衬度</span></span><span style="color: black;"><span style="color: black;">;浅灰色<span style="color: black;">暗示</span>较高的</span></span><span style="color: black;"><span style="color: black;">背</span></span><span style="color: black;"><span style="color: black;">散射</span></span><span style="color: black;"><span style="color: black;">衍射信号</span></span><span style="color: black;"><span style="color: black;">,深色<span style="color: black;">暗示</span>较</span></span><span style="color: black;"><span style="color: black;">低</span></span><span style="color: black;"><span style="color: black;">的</span></span><span style="color: black;"><span style="color: black;">背</span></span><span style="color: black;"><span style="color: black;">散射</span></span><span style="color: black;"><span style="color: black;">衍射信号</span></span><span style="color: black;"><span style="color: black;">。</span>
</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">S. Kaboli, D. Goldbaum, R.R. Chromik, R. GauvinElectron channeling contrast imaging of plastic deformation induced by indentation in polycrystalline nickelMicrosc Microanal, 19 (2013)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Laigo <span style="color: black;">等人在分析高性能耐热钢合金(含少量铌的高镍高铬钢)时<span style="color: black;">亦</span><span style="color: black;">发掘</span>了这一局限性。<span style="color: black;">她们</span><span style="color: black;">重视</span>到,在 </span><span style="color: black;">BSE </span><span style="color: black;">图像中,明亮的含铌相很容易与深灰色的富铬相区<span style="color: black;">掰开</span>来(图</span></span><span style="color: black;"><span style="color: black;">3</span></span><span style="color: black;"><span style="color: black;">);<span style="color: black;">然则</span>,</span></span><span style="color: black;"><span style="color: black;">两种<span style="color: black;">区别</span>的铬碳化物</span>Cr23C6<span style="color: black;">和</span><span style="color: black;">Cr7C3 </span><span style="color: black;">却<span style="color: black;">没法</span>区分</span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">为了识别铬碳化物,作者采用了两种分析技术:</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">电子</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">背</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">散射衍射和</span>EPMA</span></strong><span style="color: black;"><span style="color: black;">。</span></span><strong style="color: blue;"><span style="color: black;">Cr23C6<span style="color: black;"><span style="color: black;">拥有</span>面心立方晶格</span></span></strong><span style="color: black;"><span style="color: black;">,其晶格参数比奥氏体基体大得多:</span>10.64<span style="color: black;">埃</span></span><span style="color: black;"><span style="color: black;">对应</span></span><span style="color: black;">3.43<span style="color: black;">埃,而</span></span><strong style="color: blue;"><span style="color: black;">Cr7C3<span style="color: black;">为正方晶格</span></span></strong><span style="color: black;"><span style="color: black;">。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">这两种碳化物的<span style="color: black;">成份</span><span style="color: black;">亦</span>有<span style="color: black;">明显</span>差异,可<span style="color: black;">经过</span></span> EPMA <span style="color: black;">进行鉴定</span></span></strong><span style="color: black;"><span style="color: black;">(</span>Cr23C6<span style="color: black;">:</span><span style="color: black;">94 wt% Cr 6 wt% C</span><span style="color: black;">,</span><span style="color: black;">C7C3</span><span style="color: black;">:</span><span style="color: black;">91 wt% Cr</span><span style="color: black;">和 </span><span style="color: black;">9 wt% C</span><span style="color: black;">)。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/c2b95c782e69492d88f40517c0fa180a~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728824055&x-signature=CxPzhkPkxy6nvsirgBSh80Y7TFA%3D" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">图</span> 3. <span style="color: black;">高性能耐热钢的 </span><span style="color: black;">BSE </span><span style="color: black;">图像。<span style="color: black;">因为</span>原子序数的高</span></span><span style="color: black;"><span style="color: black;">衬度</span></span><span style="color: black;"><span style="color: black;">,明亮的含铌相很容易与深灰色的富铬相区<span style="color: black;">掰开</span>来。</span>J. Laigo, F. Christien, </span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloysMater Charact, 59 (2008)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Laigo <span style="color: black;">等人<span style="color: black;">运用</span>配备有</span></span><span style="color: black;"><span style="color: black;">WDS</span></span><span style="color: black;"><span style="color: black;">的电子显微探针测定了</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">几种碳化物的<span style="color: black;">成份</span></span></span></strong><span style="color: black;"><span style="color: black;">。正如论文中<span style="color: black;">仔细</span>介绍的那样,<span style="color: black;">她们</span><span style="color: black;">思虑</span>到:</span>(i) </span><span style="color: black;"><span style="color: black;">将加速</span></span><span style="color: black;"><span style="color: black;">电压<span style="color: black;">调节</span>到</span>10 kV</span><span style="color: black;"><span style="color: black;">,以减少</span>X<span style="color: black;">射线发射体积;</span><span style="color: black;">(ii)</span><span style="color: black;"><span style="color: black;">经过</span><span style="color: black;">调节</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">脉冲高度分析仪参数</span></span></span><span style="color: black;"><span style="color: black;">,减少干扰碳</span>Kα<span style="color: black;">峰的峰值的影响;</span><span style="color: black;">(iii) </span><span style="color: black;">在<span style="color: black;">测绘</span>过程中<span style="color: black;">运用</span>液氮冷指,以</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;"><span style="color: black;">尽可能</span>减少碳污染对碳定量</span></span></span><span style="color: black;"><span style="color: black;">的影响。</span>Laigo<span style="color: black;">等人决定<span style="color: black;">运用</span></span></span><span style="color: black;"><span style="color: black;">铬、铁和镍的</span>Lα<span style="color: black;">线进行定量分析</span></span><span style="color: black;"><span style="color: black;">,<span style="color: black;">尤其</span>是结合<span style="color: black;">运用</span>纯元素标准进行标准化,这一决定是<span style="color: black;">能够</span>理解的,但并非百分之百正确。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Llovet<span style="color: black;">等人随后<span style="color: black;">发布</span>的一项实验<span style="color: black;">科研</span>结果<span style="color: black;">表示</span>,在<span style="color: black;">运用</span>纯元素标准时,用这些</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">低能量</span>X<span style="color: black;">射线对不锈钢进行定量分析会产生很大误差</span></span></span><span style="color: black;"><span style="color: black;">。虽然铁和镍</span>Kα X <span style="color: black;">射线对铬</span><span style="color: black;">Kα</span><span style="color: black;">的</span><span style="color: black;">X</span><span style="color: black;">射线荧光会<span style="color: black;">增多</span></span><span style="color: black;">X</span><span style="color: black;">射线发射量的担忧是<span style="color: black;">恰当</span>的,但</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">科研</span></span></span><span style="color: black;"><span style="color: black;">报告<span style="color: black;">叫作</span>,</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">铬含量被低估了</span>17%<span style="color: black;">,这可能会妨碍准确区分</span><span style="color: black;">Cr23C6</span><span style="color: black;">和</span><span style="color: black;">Cr7C3</span></span></strong><span style="color: black;"><span style="color: black;">。潜在的<span style="color: black;">处理</span><span style="color: black;">方法</span>是,在<span style="color: black;">测绘</span></span>Lα<span style="color: black;">线的<span style="color: black;">同期</span>,进一步降低加速电压或<span style="color: black;">运用</span>与碳化物<span style="color: black;">成份</span><span style="color: black;">类似</span>的标准。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">X. Llovet,</span><span style="color: black;">An inter-laboratory comparison of EPMA analysis of alloy steel at low voltage</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">IOP Conf Ser Mater Sci Eng, 32 (2012)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Pinard<span style="color: black;">和</span><span style="color: black;">Richter</span><span style="color: black;">在<span style="color: black;">运用</span></span></span><strong style="color: blue;"><span style="color: black;">3kV<span style="color: black;">的加速电压时,对</span><span style="color: black;">Cr23C6</span><span style="color: black;">和</span><span style="color: black;">Fe3C</span><span style="color: black;">的定量结果很好</span></span></strong><span style="color: black;"><span style="color: black;">,而<span style="color: black;">她们</span>报告说,<span style="color: black;">倘若</span><span style="color: black;">运用</span><span style="color: black;">成份</span><span style="color: black;">类似</span>的钢<span style="color: black;">做为</span>标准,不锈钢的定量结果会更好。另一种<span style="color: black;">处理</span><span style="color: black;">方法</span>是<span style="color: black;">运用</span></span> Lℓ <span style="color: black;">线代替 </span><span style="color: black;">Lα </span><span style="color: black;">线。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">P.T. Pinard, S. RichterImproving the quantification at high spatial resolution using a field emission electron microprobeIOP Conf Ser Mater Sci Eng, 55 (2014), Article 012016</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">与</span>Laigo<span style="color: black;"><span style="color: black;">同样</span>,其他</span></span><span style="color: black;"><span style="color: black;">人<span style="color: black;">亦</span></span></span><span style="color: black;"><span style="color: black;">面临</span>BSE<span style="color: black;"><span style="color: black;">影像</span>的局限性,并<span style="color: black;">经过</span>获取</span><span style="color: black;">X</span><span style="color: black;">射线图</span></span><span style="color: black;"><span style="color: black;">(</span></span><span style="color: black;"><span style="color: black;">Mapping</span></span><span style="color: black;"><span style="color: black;">)</span></span><span style="color: black;"><span style="color: black;">来<span style="color: black;">弥补</span></span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构分析。</span>X<span style="color: black;">射线图<span style="color: black;">一般</span>以比电子图像更低的分辨率<span style="color: black;">得到</span>,<span style="color: black;">由于</span>收集足够的</span><span style="color: black;">X</span><span style="color: black;">射线需要<span style="color: black;">每一个</span>像素更长的停留时间。</span><span style="color: black;">X</span><span style="color: black;">射线图<span style="color: black;">能够</span><span style="color: black;">经过</span>偏转电子束(如</span><span style="color: black;">SE/BSE</span><span style="color: black;">图像)或</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">移动载物台来获取图谱</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">,</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">后者<span style="color: black;">一般</span>用于</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">WDS</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">的采集,其中光谱仪散焦会影响</span>30-40m<span style="color: black;">以上视场的</span><span style="color: black;">X</span><span style="color: black;">射线强度</span></span></span><span style="color: black;"><span style="color: black;">。虽然</span>X<span style="color: black;">射线图仍被视为定性图,但它们比</span><span style="color: black;">BSE</span><span style="color: black;">图像更具描述性,<span style="color: black;">由于</span><span style="color: black;">每一个</span>图都<span style="color: black;">表示</span>了视场内元素的分布。不需要解释</span><span style="color: black;">BSE</span><span style="color: black;">图像的灰度,<span style="color: black;">亦</span>不需要事先<span style="color: black;">认识</span>样品的化学性质来识别含有特定元素的区域。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">X<span style="color: black;">射线图中</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">每一个</span>像素的强度<span style="color: black;">能够</span>是原始峰值强度或净强度</span></span></strong><span style="color: black;"><span style="color: black;">。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">原始峰值强度</span></span></strong><span style="color: black;"><span style="color: black;">对应于由</span></span><span style="color: black;"><span style="color: black;">WDS</span></span><span style="color: black;"><span style="color: black;">在以</span>X<span style="color: black;">射线峰为中心的固定位置<span style="color: black;">测绘</span>的</span><span style="color: black;">X</span><span style="color: black;">射线强度;</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">净强度</span></span></strong><span style="color: black;"><span style="color: black;">对应于感兴趣区域内</span></span><span style="color: black;"><span style="color: black;">EDS</span></span><span style="color: black;"><span style="color: black;">光谱的总强度。<span style="color: black;">因此呢</span>,在解释</span><span style="color: black;">“</span><span style="color: black;">峰强度</span><span style="color: black;">”X</span><span style="color: black;">射线图时,应<span style="color: black;">重视</span>背景强度变化和</span><span style="color: black;">X</span><span style="color: black;">射线峰重叠(尤其是</span><span style="color: black;">EDS</span><span style="color: black;">)<span style="color: black;">引起</span>的潜在</span></span><span style="color: black;"><span style="color: black;">假象</span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">运用</span></span><span style="color: black;">“</span><span style="color: black;">净强度</span><span style="color: black;">”X</span><span style="color: black;">射线图<span style="color: black;">寓意</span>着<span style="color: black;">测绘</span>(或<span style="color: black;">运用</span></span><span style="color: black;">“</span><span style="color: black;">平均原子序数</span><span style="color: black;">”</span><span style="color: black;">背景模型进行计算)背景强度,并将其从峰值强度中减去,以及进行干扰校正或峰值去卷积程序以解析重叠的</span><span style="color: black;">X</span><span style="color: black;">射线峰值。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">J.J. Donovan, T.N. Tingle</span><span style="color: black;">An improved mean atomic number bac<span style="color: black;">公斤</span>round correction for quantitative microanalysis</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"> Microsc Microanal, 2 (1996)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">例如,</span></span><span style="color: black;"><span style="color: black;">下面</span></span><span style="color: black;">BSE<span style="color: black;">图像中的深色区域对应于</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">镍</span>-<span style="color: black;">铬</span><span style="color: black;">-</span><span style="color: black;">硼</span><span style="color: black;">-</span><span style="color: black;">硅合金的富硼夹杂物</span></span></strong><span style="color: black;"><span style="color: black;">。</span>X<span style="color: black;">射线图还<span style="color: black;">表示</span>了基体晶粒之间的</span></span><span style="color: black;"><span style="color: black;">硼变化(黑色和灰色区域)</span></span><span style="color: black;"><span style="color: black;">。对</span>Fe<span style="color: black;">图的进一步<span style="color: black;">检测</span><span style="color: black;">表示</span>,灰色区域中</span><span style="color: black;">FeKα</span><span style="color: black;">强度较低(</span><span style="color: black;">Si</span><span style="color: black;">强度<span style="color: black;">亦</span>较低,见图</span></span><span style="color: black;"><span style="color: black;">4</span></span><span style="color: black;"><span style="color: black;">)。这<span style="color: black;">显示</span>这些区域的镍浓度较高,<span style="color: black;">因此呢</span>背景强度略高。<span style="color: black;">倘若</span>不<span style="color: black;">测绘</span>和校正背景,就不可能从</span>X<span style="color: black;">射线图中推断出基体颗粒<span style="color: black;">是不是</span><span style="color: black;">拥有</span><span style="color: black;">区别</span>的硼浓度。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Chang<span style="color: black;">等人在<span style="color: black;">区别</span>的颗粒中进行了定量分析(隐含背景校正),而不是净强度</span><span style="color: black;">X</span><span style="color: black;">射线图,并</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">发掘</span>了</span>5<span style="color: black;">重量</span><span style="color: black;">%B</span><span style="color: black;">的变化,证实了在</span><span style="color: black;">B</span><span style="color: black;">图中观察到的强度差异</span></span></strong><span style="color: black;"><span style="color: black;">。<span style="color: black;">另外</span>,</span>Chang<span style="color: black;">等人<span style="color: black;">运用</span></span><span style="color: black;">X</span><span style="color: black;">射线图和定量分析相结合的<span style="color: black;">办法</span>来识别</span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构中的其他相(</span>Ni3Si<span style="color: black;">、</span><span style="color: black;">Ni3B</span><span style="color: black;">、</span><span style="color: black;">CrB</span><span style="color: black;">和</span><span style="color: black;">Cr7C3</span><span style="color: black;">),并<span style="color: black;">认识</span>温度对</span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构的影响。</span>X<span style="color: black;">射线图<span style="color: black;">供给</span>了<span style="color: black;">相关</span>其分布和形态的信息(例如某些相的面积分数),而</span></span><span style="color: black;"><span style="color: black;">定量分析<span style="color: black;">评定</span>了元素之间的原子比例在<span style="color: black;">区别</span>温度下<span style="color: black;">怎样</span>变化</span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/301ab08c42e24a789301e40dd20ccb5e~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728824055&x-signature=pUdpDL0xXiLexy6uwe4PPI9W5Bo%3D" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">图</span></span><span style="color: black;"><span style="color: black;">4 </span></span><span style="color: black;"><span style="color: black;">镍基合金的(</span>c<span style="color: black;">)</span><span style="color: black;">B</span><span style="color: black;">、(</span><span style="color: black;">e</span><span style="color: black;">)</span><span style="color: black;">Si</span><span style="color: black;">和(</span><span style="color: black;">g</span><span style="color: black;">)</span><span style="color: black;">Fe</span><span style="color: black;">的</span><span style="color: black;">BSE</span><span style="color: black;">图像和</span><span style="color: black;">X</span><span style="color: black;">射线图。</span><span style="color: black;">J.H. Chang, Microstructural and microhardness characteristics of induction melted nickel-based alloys</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Mater Chem Phys, 120 (2010)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在</span>Chang<span style="color: black;">等人的<span style="color: black;">科研</span>中,</span></span><span style="color: black;">XRD<span style="color: black;">被用来确认</span><span style="color: black;">EPMA</span><span style="color: black;">的相鉴定</span></span><span style="color: black;"><span style="color: black;">。两种技术都识别出了相同数量的相,两种技术的互补性得到了证明,<span style="color: black;">由于</span>一种技术被用来鉴定另一种技术<span style="color: black;">没法</span>观察或检测到的相。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">做为</span>固体氧化物燃料电池阴极潜在材料<span style="color: black;">科研</span>工作的一部分,</span>Grundy<span style="color: black;">等人<span style="color: black;">科研</span>了氧化锶在</span><span style="color: black;">La2O3 </span><span style="color: black;">中的固溶体,反之<span style="color: black;">也</span>然。在</span><span style="color: black;">La2O3</span><span style="color: black;">基体中,</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">因为</span></span><span style="color: black;">α-La2O3</span><span style="color: black;">和</span><span style="color: black;">β </span><span style="color: black;">相的</span><span style="color: black;">Sr</span><span style="color: black;">含量<span style="color: black;">类似</span>,<span style="color: black;">因此呢</span>在电子显微镜的光学和电子图像中<span style="color: black;">没法</span>将它们区<span style="color: black;">掰开</span>来</span></span></strong><span style="color: black;"><span style="color: black;">。这些相的<span style="color: black;">成份</span>是<span style="color: black;">经过</span></span> XRD <span style="color: black;"><span style="color: black;">运用</span><span style="color: black;">区别</span> </span><span style="color: black;">Sr </span><span style="color: black;">含量的标准来确定的。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">A.N. Grundy, Experimental phase diagram determination and thermodynamic assessment of the La2O3–SrO system</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Acta Mater, 50 (2002)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Aljarrah <span style="color: black;">等人<span style="color: black;">科研</span>了</span><span style="color: black;">Mg-Al-Sr </span><span style="color: black;">体系,该体系<span style="color: black;">拥有</span>良好的抗蠕变性,有望用于镁合金的高温应用。<span style="color: black;">按照</span>热力学计算,<span style="color: black;">能够</span>预测</span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构中存在</span>Al4Sr<span style="color: black;">,但</span><span style="color: black;">EPMA</span><span style="color: black;"><span style="color: black;">没法</span>检测到。然而,</span><span style="color: black;">XRD</span><span style="color: black;"><span style="color: black;">测绘</span>却证实了它的存在。作者将这一差异归因于</span></span><strong style="color: blue;"><span style="color: black;">Al4Sr <span style="color: black;">在</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">显微</span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">结构中以小沉淀的形式<span style="color: black;">显现</span>,<span style="color: black;">小于</span></span> EPMA <span style="color: black;">的可实现分辨率</span></span></strong><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">M. Aljarrah, M.A. Parvez, J. Li, E. Essadiqi, M. MedrajMicrostructural characterization of Mg–Al–Sr alloysSci Technol Adv Mater, 8 (2007)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在其他<span style="color: black;">状况</span>下,</span>EPMA <span style="color: black;">被证明比</span><span style="color: black;">XRD</span><span style="color: black;">更能深入识别相。</span><span style="color: black;">Jiang</span><span style="color: black;">等人<span style="color: black;">经过</span>对</span><span style="color: black;">BSE </span><span style="color: black;">图像上<span style="color: black;">区别</span>位置的定量点分析,</span></span><span style="color: black;"><span style="color: black;">确定了铝</span>-<span style="color: black;">钙</span><span style="color: black;">-</span><span style="color: black;">镍体系中的一个新相(</span><span style="color: black;">Al78Ca9Ni13</span><span style="color: black;">)</span></span><span style="color: black;"><span style="color: black;">。该相后来<span style="color: black;">经过</span>对</span>XRD<span style="color: black;"><span style="color: black;">测绘</span>结果的重新分析得到了证实。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Y. Jiang, Experimental investigation and thermodynamic assessment of Al–Ca–Ni ternary systemJ Mater Sci, 52 (2017)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在<span style="color: black;">科研</span>次要合金元素对</span>Mg-9Al<span style="color: black;">合金耐腐蚀性的影响时,</span><span style="color: black;">Mingo</span><span style="color: black;">等人指出,合金添加物不会影响两相基体的<span style="color: black;">成份</span>或形态,但</span><span style="color: black;">Mn</span><span style="color: black;">、</span><span style="color: black;">Nd</span><span style="color: black;">和</span><span style="color: black;">Y</span><span style="color: black;">会改变金属间化合物的<span style="color: black;">成份</span>。</span></span><span style="color: black;">EPMA <span style="color: black;">能够识别许多金属间化合物(</span><span style="color: black;">Al-Mn-Fe</span><span style="color: black;">、</span><span style="color: black;">Al-Fe-Nd</span><span style="color: black;">、</span><span style="color: black;">Al2Y</span><span style="color: black;">等),而</span><span style="color: black;">XRD</span><span style="color: black;">只能检测到</span><span style="color: black;">Al2Y</span></span><span style="color: black;"><span style="color: black;">。</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">另外</span>,</span></span><span style="color: black;">Mingo<span style="color: black;">等人将</span><span style="color: black;">EPMA</span><span style="color: black;">和</span><span style="color: black;">XRD</span><span style="color: black;">测得的硼含量差异归因于</span><span style="color: black;">"XRD</span><span style="color: black;"><span style="color: black;">没法</span>检测到小体积分数的相</span><span style="color: black;">"</span><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">总之,</span>EPMA<span style="color: black;">与其他分析技术的<span style="color: black;">区别</span>之处在于能够准确量化</span></span><span style="color: black;"><span style="color: black;">显微</span></span><span style="color: black;"><span style="color: black;">结构中感兴趣的特定特征的<span style="color: black;">构成</span>。</span></span><span style="color: black;"><span style="color: black;">当然,</span></span><span style="color: black;"><span style="color: black;">这些例子<span style="color: black;">显示</span>了</span>EPMA<span style="color: black;">和</span><span style="color: black;">XRD</span><span style="color: black;">技术的互补性及其局限性,尤其是在<span style="color: black;">测绘</span>小特征和低体积分数特征时。这<span style="color: black;">亦</span>是<span style="color: black;">有些</span>作者继续<span style="color: black;">运用</span>透射电子显微镜</span></span><span style="color: black;"><span style="color: black;">(</span></span><span style="color: black;"><span style="color: black;">TEM</span></span><span style="color: black;"><span style="color: black;">)</span></span><span style="color: black;"><span style="color: black;">和原子探针断层扫描技术</span></span><span style="color: black;"><span style="color: black;">(</span></span><span style="color: black;"><span style="color: black;">APT</span></span><span style="color: black;"><span style="color: black;">)</span></span><span style="color: black;"><span style="color: black;">进行<span style="color: black;">科研</span>的<span style="color: black;">原由</span>。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;"><span style="color: black;">2 </span></span></strong><strong style="color: blue;"><span style="color: black;"><span style="color: black;">相图</span></span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">材料科学在很大程度上依赖于对<span style="color: black;">目的</span>材料中存在的相<span style="color: black;">构成</span>的<span style="color: black;">认识</span>,无论是单相还是多相材料</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">。<span style="color: black;">理学</span>、机械和电子特性源于特定相和<span style="color: black;">关联</span></span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">显微</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">结构的性质</span></span></span><span style="color: black;"><span style="color: black;">。对新材料的<span style="color: black;">科研</span>大多始于对合适的<span style="color: black;">目的</span>材料相图的<span style="color: black;">检测</span>,该</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">相图是从最佳达到平衡(或接近平衡)状态的实验样品中<span style="color: black;">研发</span>出来的</span></span></strong><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在</span></span><span style="color: black;"><span style="color: black;">EPMA</span></span><span style="color: black;"><span style="color: black;">发展之前,最初的相图确定工作大多基于与</span> X <span style="color: black;">射线衍射数据一致的晶格结构计算。这种<span style="color: black;">办法</span></span></span><span style="color: black;"><span style="color: black;">需要对假定平衡组合中存在的相的化学<span style="color: black;">成份</span>做出假设</span></span><span style="color: black;"><span style="color: black;">。然而,随着</span></span><span style="color: black;"><span style="color: black;">EPMA</span></span><span style="color: black;"><span style="color: black;">技术的发展,<span style="color: black;">能够</span>精确到微米级确定各相的<span style="color: black;">实质</span>化学<span style="color: black;">成份</span>。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Castaing<span style="color: black;">在他的论文中首次提出了电子探针扩散</span></span><span style="color: black;"><span style="color: black;">界面</span></span><span style="color: black;"><span style="color: black;">数据。这是</span>20<span style="color: black;">世纪</span><span style="color: black;">60</span><span style="color: black;">年代初利用</span><span style="color: black;">EPMA </span><span style="color: black;">发布相平衡数据的先驱,这些数据<span style="color: black;">重点</span>来自新的电子探针制造者</span><span style="color: black;">--Ogilvie</span><span style="color: black;">、</span><span style="color: black;">Wittry</span><span style="color: black;">、</span><span style="color: black;">Birks </span><span style="color: black;">和 </span><span style="color: black;">Borovskii </span><span style="color: black;">的实验室。</span><span style="color: black;">Seebold & Birks </span><span style="color: black;">可能是最早报 </span><span style="color: black;">EPMA </span><span style="color: black;"><span style="color: black;">科研</span>结果的人,<span style="color: black;">她们</span><span style="color: black;">供给</span>了</span><span style="color: black;">6</span><span style="color: black;">个金属二元扩散实验的结果,<span style="color: black;">明显</span>了中间平衡相,<span style="color: black;">包含</span><span style="color: black;">有些</span>以前从未记录过的相。其他<span style="color: black;">初期</span>工作报告了</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">镓和锑在</span> Ge <span style="color: black;">中的溶解度,以及铁</span><span style="color: black;">-</span><span style="color: black;">镍在金属陨石中的溶解度</span></span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">此后</span></span><span style="color: black;"><span style="color: black;">,</span>EPMA <span style="color: black;">在确定相平衡方面的应用发展<span style="color: black;">快速</span>。到</span><span style="color: black;">20</span><span style="color: black;">世纪</span><span style="color: black;">70</span><span style="color: black;">年代中期,正如美国国家科学院的一个小组所报告的那样,对严格<span style="color: black;">评定</span>合金相图数据的<span style="color: black;">需要</span>已变得<span style="color: black;">非常</span>重要。</span><span style="color: black;">1977 </span><span style="color: black;">年,美国国家标准局就</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">合金和陶瓷相图数据的<span style="color: black;">需要</span>问题</span></span></strong><span style="color: black;"><span style="color: black;">召开了一次国际研讨会,之后,</span>ASM<span style="color: black;">(美国金属学会)和国家标准局于 </span><span style="color: black;">1978 </span><span style="color: black;">年<span style="color: black;">起步</span>了一项合金相图数据计划。该计划由 </span><span style="color: black;">T. Massalski </span><span style="color: black;">和 </span><span style="color: black;">A. Price </span><span style="color: black;">负责,</span><span style="color: black;">ASM </span><span style="color: black;">从工业界、政府、基金会以及 </span><span style="color: black;">ASM </span><span style="color: black;">分会和会员处筹集了 </span><span style="color: black;">400 </span><span style="color: black;">万美元(</span><span style="color: black;">1977 </span><span style="color: black;">年)的资金,为大幅<span style="color: black;">增多</span>相平衡数据库<span style="color: black;">供给</span>了所需的动力。</span></span><span style="color: black;">EPMA<span style="color: black;">在材料科学的这一进步中发挥了关键<span style="color: black;">功效</span>。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">JF. SmithIntroduction to Phase DiagramsJ-C Zhao (Ed.), Methods for Phase Diagram Determination, Elsevier (2007)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Zhao 2007<span style="color: black;">年出版的《相图测定<span style="color: black;">办法</span>》一书<span style="color: black;">供给</span>了极好的最新综述,下文将<span style="color: black;">说到</span>该书中的几个</span></span><span style="color: black;"><span style="color: black;">段落</span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">J.-C. Zhao Methods for phase diagram determination</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Elsevier (2007)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在过去的四十年中,相平衡<span style="color: black;">科研</span><span style="color: black;">持续</span>发展,其中一项重要的发展<span style="color: black;">便是</span>计算多组分相图</span> </span><span style="color: black;"><span style="color: black;">程序</span></span><span style="color: black;">CALPHAD<span style="color: black;">。</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">仅从量子力学或<span style="color: black;">第1</span>性原理推导出的热力学值<span style="color: black;">没法</span>准确预测多组分相图,<span style="color: black;">因此呢</span>非常依赖基于</span>EPMA<span style="color: black;">的二元和三元相数据</span></span></strong><span style="color: black;"><span style="color: black;">。</span>CALPHAD<span style="color: black;">程序能够最大限度地减少获取三元相图所需的工作。<span style="color: black;">而后</span>,</span><span style="color: black;">EPMA </span><span style="color: black;">数据<span style="color: black;">能够</span>完善相图,<span style="color: black;">从而</span>完善热力学值。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;"><span style="color: black;">相平衡<span style="color: black;">科研</span>的传统<span style="color: black;">办法</span>是<span style="color: black;">运用</span>扩散耦合</span></span></strong><span style="color: black;"><span style="color: black;">,即将两种材料(金属或非金属、合金或纯元素)紧密接触,<span style="color: black;">而后</span>进行一<span style="color: black;">按时</span>间的热处理,<span style="color: black;">一般</span>是在常压下,</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">以产生固溶体和金属间化合物</span></span></span><span style="color: black;"><span style="color: black;">。</span>Kodentsov<span style="color: black;">等人<span style="color: black;">仔细</span>描述了这种<span style="color: black;">办法</span>。</span></span><span style="color: black;"><span style="color: black;">Zhao</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">研发</span>并描述的扩散多重法是这一技术的进步。在多重扩散法中,</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">三个或<span style="color: black;">更加多</span><span style="color: black;">区别</span>的金属块被精确切割,<span style="color: black;">而后</span>紧密接触,加热到所需的温度以促进热相互扩散</span></span></strong><span style="color: black;"><span style="color: black;">,并以最佳方式形成局部平衡相。这种<span style="color: black;">办法</span><span style="color: black;">拥有</span>节省时间和有效利用原材料的优点。只需在一个支架上安装几个三界面,就<span style="color: black;">能够</span>对多个三元系统的等温部分进行<span style="color: black;">评定</span>,而无需制作和处理数十个单独的扩散耦合。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Kodentsov<span style="color: black;">等人对利用</span><span style="color: black;">EPMA</span><span style="color: black;">优化相平衡实验数据准确性的程序进行了极好的总结,这并不是一件小事。这三位作者<span style="color: black;">持有</span>数十年的经验,为当前和<span style="color: black;">将来</span><span style="color: black;">运用</span> </span><span style="color: black;">EPMA </span><span style="color: black;">进行相平衡<span style="color: black;">科研</span>的<span style="color: black;">科研</span>人员<span style="color: black;">供给</span>了重要的总结。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;">她们</span>总结的重要方面<span style="color: black;">包含</span></span></span><span style="color: black;"><span style="color: black;">:</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(i)</span></span><span style="color: black;">WDS<span style="color: black;">与</span><span style="color: black;">EDS </span><span style="color: black;">技术的比较,其中重要的一点是,<span style="color: black;">运用</span></span></span><span style="color: black;">EDS<span style="color: black;">很难<span style="color: black;">得到</span>非常准确的<span style="color: black;">成份</span>信息</span></span><span style="color: black;"><span style="color: black;">;</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(ii)</span></span><span style="color: black;"><span style="color: black;">样品制备问题:材料在相间界面上的涂抹和蚀刻表面(</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">区别</span>的相高度</span></span><span style="color: black;"><span style="color: black;">);</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(iii)</span></span><span style="color: black;">EPMA <span style="color: black;"><span style="color: black;">测绘</span>中的误差:计数统计和数据校正<span style="color: black;">办法</span>(矩阵、归一化)中的</span></span><span style="color: black;"><span style="color: black;">正常误差</span></span><span style="color: black;"><span style="color: black;">;</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(iv)</span></span><span style="color: black;"><span style="color: black;">对分析体积的误解(分析体积大于电子</span></span><span style="color: black;"><span style="color: black;">束斑</span></span><span style="color: black;"><span style="color: black;">尺寸)</span>--<span style="color: black;"><span style="color: black;">因此呢</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">没法</span>确定界面上的确切<span style="color: black;">成份</span></span></span><span style="color: black;"><span style="color: black;">;</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">(v)</span></span><span style="color: black;"><span style="color: black;">样品到探测器的几何形状:<span style="color: black;">倘若</span>产生的</span>X <span style="color: black;">射线靠近并穿过相邻的<span style="color: black;">区别</span>相,则</span></span><span style="color: black;">X <span style="color: black;">射线会被吸收</span></span><span style="color: black;"><span style="color: black;">;</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">(vi) <span style="color: black;">可能<span style="color: black;">显现</span></span></span><span style="color: black;"><span style="color: black;">二次荧光</span></span><span style="color: black;"><span style="color: black;">,即主特征和连续</span> X <span style="color: black;">射线可能会激发数十到数百微米之外的其他相产生 </span><span style="color: black;">X </span><span style="color: black;">射线,从而 </span><span style="color: black;">"</span><span style="color: black;">污染 </span><span style="color: black;">"</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">结果。<span style="color: black;">非常多</span>时候,这会产生很高的分析总值。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">以下是</span> EPMA <span style="color: black;">应用于相平衡<span style="color: black;">科研</span>的<span style="color: black;">有些</span>最新实例。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Cao<span style="color: black;">和</span><span style="color: black;">Zhao</span><span style="color: black;"><span style="color: black;">供给</span>了利用</span></span><span style="color: black;">WDS-EPMA<span style="color: black;">进行相平衡<span style="color: black;">科研</span>的最新实例</span></span><span style="color: black;"><span style="color: black;">。<span style="color: black;">她们</span><span style="color: black;">运用</span>了一种</span> "<span style="color: black;">双炉扩散复式</span><span style="color: black;">"</span><span style="color: black;">,这种复式结合了多种扩散偶和三重扩散偶,并进行了两次热处理。</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">第1</span>次处理<span style="color: black;">快速</span>形成固溶体和金属间化合物;第二次退火从过饱和固溶体中产生相沉淀</span></span><span style="color: black;"><span style="color: black;">。在本例中,</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">经过</span>将</span>5<span style="color: black;">种元素(铬、铁、镍、钴和钼)组合在一个精心制备的镶样中,产生了</span><span style="color: black;">8</span><span style="color: black;">个扩散三元组</span></span></strong><span style="color: black;"><span style="color: black;">(图</span></span><span style="color: black;"><span style="color: black;">5</span></span><span style="color: black;"><span style="color: black;">)。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/4cd2f0dee18b4366a05024a2e08246e1~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728824055&x-signature=ekXJRBiBGRPf52iFOz%2BFY1IzfNc%3D" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">图</span> </span><span style="color: black;"><span style="color: black;">5</span></span><span style="color: black;">. (<span style="color: black;">左图)热处理后制作的扩散多面体的放电加工切片,附参考图。</span><span style="color: black;">(</span><span style="color: black;">右图)左图红框中所示铬</span><span style="color: black;">-</span><span style="color: black;">铁</span><span style="color: black;">-</span><span style="color: black;">镍区域的 </span><span style="color: black;">BSE </span><span style="color: black;">图像。这是 </span><span style="color: black;">EPMA </span><span style="color: black;">相<span style="color: black;">测绘</span>的位置。</span><span style="color: black;">S. Cao, J.-C. Zhao</span></span><span style="color: black;">Application of dual-anneal diffusion multiples to the effective study of phase diagrams and phase transformations in the Fe–Cr–Ni system</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Acta Mater, 88 (2015)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Cao<span style="color: black;">和</span><span style="color: black;">Zhao</span><span style="color: black;"><span style="color: black;">思虑</span>了重要的</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">铁</span>-<span style="color: black;">铬</span><span style="color: black;">-</span><span style="color: black;">镍相图</span></span></strong><span style="color: black;"><span style="color: black;">。实验<span style="color: black;">首要</span><span style="color: black;">经过</span>扫描电镜、</span>BSE<span style="color: black;"><span style="color: black;">影像</span>和 </span><span style="color: black;">EDS </span><span style="color: black;">定性<span style="color: black;">评定</span>进行了<span style="color: black;">检测</span>。<span style="color: black;">而后</span><span style="color: black;">运用</span>电子显微探针在许多沉淀</span><span style="color: black;">/</span><span style="color: black;">基体界面上以</span></span><span style="color: black;"><span style="color: black;"> 1 µm<span style="color: black;">为步长采集一系列连接线,并沿着含沉淀和无沉淀区域的分隔位置进行 </span><span style="color: black;">EPMA</span><span style="color: black;">点分析</span></span></span><span style="color: black;"><span style="color: black;">。<span style="color: black;">她们</span><span style="color: black;">发掘</span>这些结果非常吻合,<span style="color: black;">况且</span>它们<span style="color: black;">一起</span>很好地界定了相界。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在这项<span style="color: black;">科研</span>中,</span>1200 °C<span style="color: black;">的结果与之前<span style="color: black;">颁布</span>的实验结果以及</span><span style="color: black;">ThermoCalc</span><span style="color: black;">和</span><span style="color: black;">TCFES</span><span style="color: black;">数据库都有极好的<span style="color: black;">关联</span>性。结果<span style="color: black;">显示</span>,从</span><span style="color: black;">bcc</span><span style="color: black;">到</span><span style="color: black;">sigma</span><span style="color: black;">相的转变最初是<span style="color: black;">经过</span>大规模转变机制<span style="color: black;">出现</span>的。实</span></span><span style="color: black;"><span style="color: black;">验首次测定了</span><span style="color: black;">α</span><span style="color: black;">相在</span><span style="color: black;">900°C</span><span style="color: black;">时的镍溶解度,结果<span style="color: black;">显示</span> </span><span style="color: black;">Thermo-Calc</span><span style="color: black;">稍微低估了这一溶解度(图</span></span><span style="color: black;"><span style="color: black;">6</span></span><span style="color: black;"><span style="color: black;">)</span></span><span style="color: black;"><span style="color: black;">。这项<span style="color: black;">科研</span>还<span style="color: black;">显示</span>,在某些<span style="color: black;">状况</span>下,</span></span><span style="color: black;"><span style="color: black;">Thermo-Calc <span style="color: black;">计算出的相区可能并不准确</span></span></span><span style="color: black;"><span style="color: black;">。<span style="color: black;">科研</span>还<span style="color: black;">发掘</span>了一系列其他结果,其中重要的一点是,<span style="color: black;">倘若</span>采用传统<span style="color: black;">办法</span>,则需要花费<span style="color: black;">更加多</span>的时间、材料和精力<span style="color: black;">才可</span>得出<span style="color: black;">这般</span>的结果。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/fcec8d4354b64770bfa95d26e978a760~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728824055&x-signature=ix%2FLnuoGHl7SWOQaiKlKIu174ug%3D" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">图</span></span><span style="color: black;"><span style="color: black;">6</span></span><span style="color: black;">.<span style="color: black;">在</span><span style="color: black;">Cao</span><span style="color: black;">和</span><span style="color: black;">Zhao</span><span style="color: black;">的<span style="color: black;">科研</span>中,</span><span style="color: black;">900°CEPMA</span><span style="color: black;">确定的连接线和点<span style="color: black;">测绘</span>结果与之前<span style="color: black;">颁布</span>的确定结果以及 </span><span style="color: black;">ThermoCalc </span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">预测结果的比较。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Hellstén<span style="color: black;">和</span><span style="color: black;">Taskinen </span><span style="color: black;">研究了</span></span><strong style="color: blue;"><span style="color: black;">Cu-O-Al2O3-MgO<span style="color: black;">系统</span></span></strong><span style="color: black;"><span style="color: black;">,以便更好地<span style="color: black;">认识</span>有色金属冶炼中的</span></span><span style="color: black;"><span style="color: black;">MgAl2O4 <span style="color: black;">耐火材料和熔渣</span></span></span><span style="color: black;"><span style="color: black;">。<span style="color: black;">她们</span><span style="color: black;">运用</span></span>WDS-EPMA<span style="color: black;"><span style="color: black;">科研</span>了</span><span style="color: black;">1100-1400 °C</span><span style="color: black;">温度范围内实验混合物的<span style="color: black;">成份</span>,<span style="color: black;">尤其</span>是与炼铜<span style="color: black;">关联</span>的<span style="color: black;">成份</span>。氧是<span style="color: black;">经过</span></span><span style="color: black;">EPMA</span><span style="color: black;">测定的。<span style="color: black;">她们</span>的实验<span style="color: black;">显示</span>,</span></span><span style="color: black;"><span style="color: black;">氧化铝和氧化镁在氧化物液相中的计算溶解度(<span style="color: black;">经过</span></span>MTDATA 6.0<span style="color: black;">及其多相模块)远远大于实验结果</span></span><span style="color: black;"><span style="color: black;">,<span style="color: black;">况且</span></span>MgAl2O4 <span style="color: black;">耐火材料对<span style="color: black;">饱含</span>氧化铜的氧化物液<span style="color: black;">拥有</span>化学抗性。值得<span style="color: black;">重视</span>的是,本文全面介绍了</span><span style="color: black;">EPMA</span><span style="color: black;">程序的设置(设备、千伏、电流、标准、基体校正),<span style="color: black;">供给</span>了非归一化</span><span style="color: black;">wt%</span><span style="color: black;">数据和分析误差(标准偏差)。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">N. Hellstén, P. TaskinenExperimental phase relations between MgO-saturated magnesium-aluminate spinel (MgAl2O4) and CuOx-rich liquidCeram Int, 43 (2017)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">显然,就<span style="color: black;">初始</span><span style="color: black;">成份</span>(元素)而言,实验后<span style="color: black;">周期</span><span style="color: black;">成份</span>测定的准确性至关重要。然而,杂质(如</span>O<span style="color: black;">、</span><span style="color: black;">C</span><span style="color: black;">、</span><span style="color: black;">N</span><span style="color: black;">、</span><span style="color: black;">H</span><span style="color: black;">)的影响可能较少得到<span style="color: black;">注重</span>,</span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">这些杂质可能存在于<span style="color: black;">初始</span>材料中</span></span></span><span style="color: black;"><span style="color: black;">(供应商<span style="color: black;">供给</span>的</span> "<span style="color: black;">金属基</span><span style="color: black;">"</span><span style="color: black;">纯度<span style="color: black;">显示</span>可能存在轻元素),<span style="color: black;">亦</span>可能从环境中<span style="color: black;">得到</span>。<span style="color: black;">另外</span>,</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">界面接触处无意中<span style="color: black;">显现</span>的氧化膜或杂质的存在<span style="color: black;">亦</span>可能阻碍预期相的成核</span></span></strong><span style="color: black;"> <span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">"<span style="color: black;">实验人员应确信其测试样本中的杂质数量不足以改变有<span style="color: black;">道理</span>的结果</span><span style="color: black;">"</span><span style="color: black;">。正如在其他评论中指出的,</span></span><strong style="color: blue;"><span style="color: black;">EPMA<span style="color: black;">分析结果<span style="color: black;">不可</span>归一化</span></span></strong><span style="color: black;"><span style="color: black;">,这一点至关重要,<span style="color: black;">由于</span></span> <100 wt% <span style="color: black;">的总量是杂质存在的一个重要指标。</span><span style="color: black;">Zhao </span><span style="color: black;">回顾了铜</span><span style="color: black;">-</span><span style="color: black;">铌体系的实验结果,<span style="color: black;">显示</span></span></span><span style="color: black;"><span style="color: black;"><span style="color: black;">相对少量的未识别氧污染就可能产生错误的结论</span></span></span><span style="color: black;"><span style="color: black;">。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">J-C Zhao (Ed.), Methods for Phase Diagram Determination, Elsevier (2007)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Kodentsov <span style="color: black;">等人<span style="color: black;">供给</span>的另一个例子是,在 </span><span style="color: black;">Nb/Ni </span><span style="color: black;">对偶中,一个<span style="color: black;">显著</span>的 </span><span style="color: black;">Nb2Ni </span><span style="color: black;">相经进一步<span style="color: black;">检测</span>后<span style="color: black;">发掘</span>是</span><span style="color: black;">Nb4Ni2N</span><span style="color: black;">,这<span style="color: black;">是由于</span><span style="color: black;">初始</span> </span><span style="color: black;">Nb </span><span style="color: black;">的污染<span style="color: black;">导致</span>的。<span style="color: black;">她们</span>强调,在</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">相平衡实验中可能会产生碳化物、氧化物和氮化物;这些可能是<span style="color: black;">初始</span>材料中的杂质或环境污染<span style="color: black;">导致</span>的</span></span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">。污染可能发生在过程中的各个<span style="color: black;">过程</span>,<span style="color: black;">况且</span>可能<span style="color: black;">没法</span>重现。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">R.S. Roth, T.A. Vanderah</span><span style="color: black;">Experimental determination of phase equilibria diagrams in ceramic systems</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Solid State Ion. (2004)</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">基于标准的</span>EPMA<span style="color: black;">能够破译此类<span style="color: black;">状况</span>,<span style="color: black;">由于</span>非规范化的分析总量指出了问题的存在,这<span style="color: black;">显示</span>需要进一步关注,以<span style="color: black;">得到</span>最准确的结果。</span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;"><span style="color: black;"><span style="color: black;">源自</span>于</span><span style="color: black;">老千和他的<span style="color: black;">伴侣</span>们</span><span style="color: black;">,作者</span><span style="color: black;">孙千</span></span></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">半导体工程师半导体经验分享,半导体成果交流,半导体信息发布。半导体行业动态,半导体从业者职业规划,芯片工程师成长历程。</p>
楼主听话,多发外链好处多,快到碗里来!外链论坛 http://www.fok120.com/ 感谢你的精彩评论,带给我新的思考角度。
页:
[1]